04.05.2013 Views

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4M 1M<br />

2 2 <br />

2 <br />

T E<br />

s<strong>in</strong> T s<strong>in</strong><br />

2<br />

m<br />

(3.6)<br />

( M M ) 2 2<br />

1<br />

2<br />

26<br />

From this <strong>the</strong> differential cross-section d 2pdp<br />

may be obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong><br />

impact parameter p which <strong>in</strong> turn is determ<strong>in</strong>ed by us<strong>in</strong>g equation 3.6. Follow<strong>in</strong>g this<br />

<strong>the</strong> nuclear stopp<strong>in</strong>g power Sn(E) may be determ<strong>in</strong>ed by solv<strong>in</strong>g equation 3.2 between<br />

<strong>the</strong> limits 0 to <strong>the</strong> maximum energy transferred<br />

4M<br />

M<br />

E<br />

1 2<br />

Tm (3.7)<br />

2<br />

( M 1 M 2 )<br />

In f<strong>in</strong>d<strong>in</strong>g Sn(E) <strong>the</strong> differential cross-section dσ is found which <strong>in</strong> turn depends<br />

heavily on <strong>the</strong> choice <strong>of</strong> <strong>the</strong> <strong>in</strong>teratomic potential V(r) used. Also <strong>in</strong> most cases <strong>the</strong><br />

scatter<strong>in</strong>g <strong>in</strong>tegral cannot be solved analytically and numerical methods should be<br />

employed which br<strong>in</strong>gs with it an added complexity. The most widely used <strong>the</strong>ory <strong>in</strong><br />

<strong>the</strong> prediction <strong>of</strong> ion ranges <strong>in</strong> a solid is <strong>the</strong> LSS <strong>the</strong>ory developed by L<strong>in</strong>hard, Scharf<br />

and Schiott. In <strong>the</strong> follow<strong>in</strong>g section <strong>the</strong> ma<strong>in</strong> results <strong>of</strong> this <strong>the</strong>ory will be discussed<br />

but it is left to <strong>the</strong> reader to consult fur<strong>the</strong>r references for a more detailed<br />

understand<strong>in</strong>g.<br />

3.2.3. The L<strong>in</strong>hard, Scharff and Schiott (LSS) Theory<br />

The LSS <strong>the</strong>ory uses a Thomas-Fermi model <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction between heavy ions to<br />

derive a nuclear stropp<strong>in</strong>g power Sn and electronic stopp<strong>in</strong>g power Se. The electronic<br />

stopp<strong>in</strong>g power is proportional to <strong>the</strong> velocity <strong>of</strong> <strong>the</strong> mov<strong>in</strong>g atom s<strong>in</strong>ce <strong>the</strong> process <strong>of</strong><br />

energy loss is dependent on <strong>the</strong> k<strong>in</strong>etic energy <strong>of</strong> <strong>the</strong> mov<strong>in</strong>g atom and <strong>the</strong> nuclear<br />

stopp<strong>in</strong>g power is obta<strong>in</strong>ed through <strong>the</strong> procedure shown <strong>in</strong> <strong>the</strong> previous section.<br />

The <strong>in</strong>teratomic potential used has <strong>the</strong> form,<br />

2<br />

Z1Z<br />

2e<br />

r <br />

V ( r)<br />

<br />

<br />

(3.8)<br />

4 r a <br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!