03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

y the well known expressi<strong>on</strong> [13] has a maximum frequency,<br />

ωm = 0.29ω0γ 3 e , proporti<strong>on</strong>al to the cube <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> energy. This is a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> γe larger than <strong>in</strong> the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>ear polarizati<strong>on</strong>. For the electr<strong>on</strong> rotat<strong>in</strong>g <strong>in</strong> the<br />

circularly polarized collid<strong>in</strong>g EM waves the emitted power<br />

becomes equal to the maximal energy ga<strong>in</strong> at the field amplitude<br />

a0 = arad = ε −1/3<br />

rad . For the laser wavelength<br />

λ0 = 0.8 µm εrad = 2.2 × 10−8 . The normalized amplitude<br />

arad is ≈ 400 corresp<strong>on</strong>d<strong>in</strong>g to the laser <strong>in</strong>tensity<br />

Irad = 4.5 × 1023W / cm2 .<br />

We represent the electric field and the electr<strong>on</strong> momentum<br />

<strong>in</strong> the complex form:<br />

and<br />

E = Ey + iEz = E0 exp ( −iω0t) (20)<br />

p = py + ipz = P exp ( −i(ω0t − φ)) , (21)<br />

where φ is the phase equal to the angle between the electric<br />

field vector and the electr<strong>on</strong> momentum. In the stati<strong>on</strong>ary<br />

regime, when the electr<strong>on</strong> rotates with c<strong>on</strong>stant energy, the<br />

equati<strong>on</strong>s for the electr<strong>on</strong> energy, γe = [1+(P/mec) 2 ] 1/2 ,<br />

and for the phase φ have the form<br />

a 2 0 = ( γ 2 e − 1 ) ( 1 + ε 2 radγ 6) e , (22)<br />

tan φ = − 1<br />

εradγ3 . (23)<br />

e<br />

In the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> weak radiati<strong>on</strong> damp<strong>in</strong>g, a0 ≪ ε −1/3<br />

rad ,<br />

the absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> momentum is proporti<strong>on</strong>al<br />

to the electric field magnitude, P = meca0, while<br />

<strong>in</strong> the regime <str<strong>on</strong>g>of</str<strong>on</strong>g> dom<strong>in</strong>ant radiati<strong>on</strong> damp<strong>in</strong>g effects, i.e. at<br />

a0 ≫ ε −1/3<br />

rad , it is given by P = mec (a0/εrad) 1/4 . For<br />

the momentum dependence given by this expressi<strong>on</strong> the<br />

power radiated by an electr<strong>on</strong> is Pγ,C = ω0mec 2 a0, i.e.<br />

the energy obta<strong>in</strong>ed from the driv<strong>in</strong>g electromagnetic wave<br />

is completely re-radiated <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy gamma<br />

rays. At a0 ≈ ε −1/3<br />

rad we have for the gamma phot<strong>on</strong> energy<br />

¯hωγ = 0.29¯hω0a3 (<br />

3 2<br />

rad ≈ 0.45¯hω0 mc /e ) . For example,<br />

if λ0 ≈ 0.8 µm and a0 ≈ 400 the circularly polarized laser<br />

pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensity Irad = 4.5 × 1023 W/cm2 generates a<br />

burst <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy about 20 MeV with the<br />

durati<strong>on</strong> determ<strong>in</strong>ed either by the laser pulse durati<strong>on</strong> or by<br />

the decay time <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser pulse <strong>in</strong> a plasma.<br />

In Fig. 2a we show a dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> γ and φ <strong>on</strong> the<br />

EM field amplitude, a, for the dimensi<strong>on</strong>less parameter<br />

εrad = 10−8 , obta<strong>in</strong>ed by numerical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (22,<br />

23). Here the horiz<strong>on</strong>tal axis is normalized <strong>on</strong> ε −1/3<br />

rad and<br />

the vertical axis is normalized <strong>on</strong> (am/εrad) 1/4 .<br />

The parameter χe can be expressed via the electric field,<br />

E, as (see Ref. [18])<br />

χe = |E|<br />

(<br />

m<br />

mecES<br />

2 ec 2 + |P| 2 s<strong>in</strong> 2 ) 1/2<br />

φ , (24)<br />

where φ is an angle between the electr<strong>on</strong> momentum and<br />

the electric field. As we see from Fig. 2 the angle φ tends<br />

to zero at large electric field.<br />

ϕ<br />

Figure 2: Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> γ and φ <strong>on</strong> the EM field amplitude,<br />

a, for the dimensi<strong>on</strong>less parameter εrad = 10−8 . The<br />

horiz<strong>on</strong>tal axis is normalized <strong>on</strong> ε −1/3<br />

rad and the vertical axis<br />

is normalized <strong>on</strong> (am/εrad) 1/4 .<br />

S<strong>in</strong>ce <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular polarizati<strong>on</strong> ωm is proporti<strong>on</strong>al<br />

to the cube <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> gamma-factor quantum effects<br />

should be <strong>in</strong>corporated <strong>in</strong>to the theoretical descripti<strong>on</strong><br />

at γe ≈ γ C Q = (mec 2 /0.29 ¯hω0) 1/2 ≈ 1300. For γe = a0<br />

this limit is reached at the <strong>in</strong>tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> ≈ 3.4 ×10 24 W/cm 2 .<br />

The electr<strong>on</strong> moti<strong>on</strong> should be described with<strong>in</strong> the framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics. These effects change the<br />

radiative loss functi<strong>on</strong> (see Ref. [18]). In the quantum<br />

regime, it is necessary to take <strong>in</strong>to account not <strong>on</strong>ly radiative<br />

damp<strong>in</strong>g effects but also recoil momentum effects,<br />

which change the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> because<br />

the outgo<strong>in</strong>g phot<strong>on</strong> carries away the momentum<br />

¯hkm = ¯hωm/c.<br />

In the regime when the radiati<strong>on</strong> fricti<strong>on</strong> effects are important,<br />

i.e. when a0 ≫ ε −1/3<br />

rad , the angle φ between the<br />

electr<strong>on</strong> momentum and the electric field is small be<strong>in</strong>g<br />

equal to ( εrada3 ) −1/4,<br />

0 i. e. the electr<strong>on</strong> moves almost<br />

<strong>in</strong> the electric field directi<strong>on</strong>. The electr<strong>on</strong> momentum is<br />

given by P = mec (a0/εrad) 1/4 . This yields an estimati<strong>on</strong><br />

χe ≈<br />

( a0<br />

γ<br />

a 2 S εrad<br />

b)<br />

a<br />

) 1/2<br />

. (25)<br />

This becomes greater than unity for a0 > εrada2 S ≈<br />

5.5 × 103 , which corresp<strong>on</strong>ds to the laser <strong>in</strong>tensity equal<br />

to 6 × 1025W/cm2 . In Ref. [6] an avalanche threshold<br />

<strong>in</strong>tensity several times lower has been found neglect<strong>in</strong>g<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> fricti<strong>on</strong> force (see also [19]).<br />

However, the radiati<strong>on</strong> fricti<strong>on</strong> time is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(<br />

trad = 1/ω0 εrada3 ) 1/2,<br />

0 which for a0 ≈ 5.5 × 103 is<br />

approximately <strong>on</strong>e tenth <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser period. Hence the radiati<strong>on</strong><br />

fricti<strong>on</strong> effects do not prevent the EPGP cascade development<br />

for circularly polarized collid<strong>in</strong>g waves. Such a<br />

prolific electr<strong>on</strong>-positr<strong>on</strong> pair and gamma ray creati<strong>on</strong> [4]<br />

should result <strong>in</strong> the EPGP generati<strong>on</strong>.<br />

While creat<strong>in</strong>g and then accelerat<strong>in</strong>g the electr<strong>on</strong>positr<strong>on</strong><br />

pairs the laser pulse generates an electric current<br />

and EM field. The electric field <strong>in</strong>duced <strong>in</strong>side the EPGP

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!