03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Reflected light <strong>in</strong>tensity (μJ/sr/nm)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

12 14 16 18 20 22<br />

Wavelength (nm)<br />

Figure 2: Observed spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected laser light <strong>in</strong><br />

the fly<strong>in</strong>g mirror experiment [12].<br />

was measured with a graz<strong>in</strong>g-<strong>in</strong>cidence flat-field spectrograph<br />

<strong>in</strong> the forward (0 ◦ ) directi<strong>on</strong>. The observed spectra<br />

distributed <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 7–15 nm. The upshift factors<br />

were 50–114.<br />

Although the experiment showed a somewhat coherent<br />

effect, the reflected phot<strong>on</strong> number was smaller than the<br />

theoretical expectati<strong>on</strong>. In the 2nd experiment[12], a head<strong>on</strong><br />

collisi<strong>on</strong>s setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the driver and source pulses was employed<br />

thanks to the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser system and<br />

a more powerful laser was used. The driver and source<br />

laser had peak powers <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 TW(400 mJ/27 fs) and 1.2<br />

TW(42 mJ/ 34 fs), respectively. Reflected source pulses<br />

were observed with an imag<strong>in</strong>g spectrograph that covered<br />

the wavelength range <str<strong>on</strong>g>of</str<strong>on</strong>g> 12-25 nm at the angle range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

9 ◦ − 17 ◦ . The result is shown <strong>in</strong> Fig. 2. The reflected phot<strong>on</strong><br />

number <strong>in</strong>creased to half <str<strong>on</strong>g>of</str<strong>on</strong>g> the theoretical cusp model<br />

(see Table 2).<br />

To <strong>in</strong>crease the reflectivity further, we can use a variant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (5) assum<strong>in</strong>g ωd ̸= ωs and θ = 0,<br />

Rδ ≈<br />

( ) 2<br />

ωd 1<br />

ωs 2γ3 ph<br />

. (9)<br />

If ωd > ωs, we obta<strong>in</strong> a ga<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (ωd/ωs) 2 . For example,<br />

we can use a frequency doubl<strong>in</strong>g crystal for the driver laser.<br />

Table 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflectivities and phot<strong>on</strong> numbers<br />

between the theoretical model and the experiment.<br />

Reflectivity Phot<strong>on</strong> number<br />

Theory 4×10 −5 1.5×10 10<br />

Experiment 3×10 −6 1.1×10 9<br />

Exp. (corrected) 2×10 −5 7.9×10 9<br />

There are no measurement so far <strong>on</strong> the pulse durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a reflected pulse from fly<strong>in</strong>g mirrors. However, the large<br />

phot<strong>on</strong> number obta<strong>in</strong>ed <strong>in</strong> the experiment implies that the<br />

coherent effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>s exists. Therefore, we may<br />

Intensity (arb. u.)<br />

-3<br />

-3<br />

0<br />

300 400 500<br />

Figure 3: Observed spectrum <strong>in</strong> a high-resoluti<strong>on</strong> particle<strong>in</strong>-cell<br />

simulati<strong>on</strong>.<br />

be allowed to assume that the pulse durati<strong>on</strong> is compressed<br />

down to the theoretical model predicti<strong>on</strong>.<br />

Most serious and to be c<strong>on</strong>firmed is the spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reflected pulse. There are many po<strong>in</strong>ts that degrades the<br />

focus spot such as a surface error from an ideal parabola,<br />

surface roughness, alignment error to the fly<strong>in</strong>g mirror,<br />

etc. These po<strong>in</strong>ts have not yet been addressed both experimentally<br />

and theoretically. We have just started to estimate<br />

the roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror. As a prelim<strong>in</strong>ary<br />

result we have obta<strong>in</strong>ed that the surface roughness<br />

<strong>in</strong> two-dimensi<strong>on</strong>al particle-<strong>in</strong>-cell simulati<strong>on</strong>s is smaller<br />

than the simulati<strong>on</strong> resoluti<strong>on</strong> 0.02 µm. Further analysis<br />

is needed to determ<strong>in</strong>e the focusability <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected<br />

pulse, especially at low densities (high γph) <strong>in</strong> Table 1. We<br />

also obta<strong>in</strong>ed the upshift factor <str<strong>on</strong>g>of</str<strong>on</strong>g> ωr/ωs ∼500 <strong>in</strong> a highresoluti<strong>on</strong><br />

particle-<strong>in</strong>-cell simulati<strong>on</strong> as shown <strong>in</strong> Fig. 3.<br />

Here the driver laser has an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.3 J and a pulse<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 fs, and the focused irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.7×10 19<br />

W/cm 2 (a0 = 4.1). The source laser has a wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2.4 µm <strong>in</strong> this simulati<strong>on</strong>. The plasma density is 1.5×10 19<br />

cm −3 and mesh sizes are ∆x =0.8 nm and ∆y=20 nm. Although<br />

the resolved wavelength is larger than the requirement<br />

<strong>in</strong> Table 1, water-w<strong>in</strong>dow or shorter wavelength Xrays<br />

are generated <strong>in</strong> the simulati<strong>on</strong>.<br />

CONCLUSION<br />

A relativistic fly<strong>in</strong>g mirror is exam<strong>in</strong>ed as a tool to access<br />

ultra-high electromagnetic field irradiance. We carved<br />

out laser and plasma parameters assum<strong>in</strong>g plasma and laser<br />

parameters that are not far from present-day laser technologies.<br />

We reviewed the recent experimental progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fly<strong>in</strong>g mirror. The c<strong>on</strong>cept is <strong>in</strong> progress show<strong>in</strong>g that the<br />

reflectivity is close to the theoretical estimate us<strong>in</strong>g a cusp<br />

model. Still further study is necessary to <strong>in</strong>tensify the focused<br />

laser.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!