03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

First order quantum correcti<strong>on</strong> to the Larmor radiati<strong>on</strong> ∗<br />

Gen Nakamura<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan<br />

Abstract<br />

First-order quantum correcti<strong>on</strong> to the Larmor radiati<strong>on</strong> is<br />

<strong>in</strong>vestigated <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar QED <strong>on</strong> a homogeneous<br />

background <str<strong>on</strong>g>of</str<strong>on</strong>g> a time-dependent electric field, which<br />

is a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a recent work by Higuchi and Walker<br />

so as to be extended for an accelerated charged particle <strong>in</strong><br />

a relativistic moti<strong>on</strong>. We obta<strong>in</strong> a simple approximate formula<br />

for the quantum correcti<strong>on</strong> <strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic<br />

moti<strong>on</strong> when the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle moti<strong>on</strong> is<br />

parallel to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field.<br />

INTRODUCTION<br />

The Larmor radiati<strong>on</strong> is the classical radiati<strong>on</strong> from a<br />

charged particle <strong>in</strong> an accelerated moti<strong>on</strong> [2]. In the recent<br />

paper by Higuchi and Walker [3], the quantum correcti<strong>on</strong><br />

to the Larmor radiati<strong>on</strong> is <strong>in</strong>vestigated <strong>on</strong> the basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar quantum electrodynamics (QED). In their<br />

approach, the mode functi<strong>on</strong> for the complex scalar field<br />

is c<strong>on</strong>structed with the Wentzel-Kramers-Brillou<strong>in</strong> (WKB)<br />

approximati<strong>on</strong>, <strong>in</strong> a form expanded with respect to ¯h. In a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> Higuchi and Mart<strong>in</strong>’s work [4, 5, 6] (see also references<br />

there<strong>in</strong>), it has been well understood that the mode<br />

functi<strong>on</strong> reproduces the classical Larmor formula when the<br />

radiati<strong>on</strong> energy is evaluated at the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h 0 . The firstorder<br />

quantum correcti<strong>on</strong> to the classical Larmor radiati<strong>on</strong><br />

is evaluated at the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h <strong>in</strong> Ref. [3], though the <strong>in</strong>vestigati<strong>on</strong><br />

is limited to the n<strong>on</strong>-relativistic moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

charged particle.<br />

In our work, we c<strong>on</strong>sider a simple generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Higuchi and Walker’s work [3], <strong>in</strong> order to <strong>in</strong>vestigate the<br />

case a relativistic moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an accelerated charge. Assum<strong>in</strong>g<br />

a homogeneous but time-vary<strong>in</strong>g background <str<strong>on</strong>g>of</str<strong>on</strong>g> electric<br />

field, we derive a formula for the radiati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h, the first-order correcti<strong>on</strong> due to the quantum<br />

effect. This generalized formula is applicable to the<br />

accelerated charge <strong>in</strong> a relativistic moti<strong>on</strong>, and we focus<br />

our <strong>in</strong>vestigati<strong>on</strong> <strong>on</strong> the first-order quantum correcti<strong>on</strong> to<br />

the Larmor radiati<strong>on</strong> <strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic moti<strong>on</strong>.<br />

FORMULATION<br />

We c<strong>on</strong>sider the scalar QED with the acti<strong>on</strong>,<br />

∫<br />

S = dtd 3 x<br />

×<br />

[<br />

(Dµφ) † D µ φ − m2<br />

¯h 2 φ† φ − 1<br />

∗ This presentati<strong>on</strong> is based <strong>on</strong> Ref.[1]<br />

4µ0<br />

FµνF µν<br />

]<br />

, (1)<br />

φ<br />

Pi<br />

k<br />

Pf<br />

Figure 1: Feynman Diagram for the process.<br />

where Dµ = (∂/∂x µ + ieAµ/¯h), e and m are the charge<br />

and the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the massive scalar field, respectively, and<br />

µ0 is the magnetic permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. We work <strong>in</strong><br />

the M<strong>in</strong>kowski spacetime, but c<strong>on</strong>sider the homogeneous<br />

electric background field E(t), which is related to the vector<br />

potential by Aµ = (0, A(t)) and ˙ A(t) = −E(t), where<br />

the dot denotes the differentiati<strong>on</strong> with respect to the time.<br />

The equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the free scalar field yields<br />

( ∂ 2<br />

∂t 2 + (p − eA(t))2 + m 2<br />

¯h 2<br />

γ<br />

φ<br />

)<br />

ϕp(t) = 0, (2)<br />

where ϕp(t) is the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fourier expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the field, i.e., the mode functi<strong>on</strong>. Us<strong>in</strong>g the mode functi<strong>on</strong>,<br />

which is normalized so as to be ˙ϕ ∗ pϕp − ϕ ∗ p ˙ϕp = i, the<br />

quantized field is c<strong>on</strong>structed as<br />

φ(x) =<br />

√ ¯h<br />

L 3<br />

∑<br />

p<br />

(<br />

ϕp(t)bp + ϕ ∗ −p(t)c †<br />

)<br />

−p e ip·x/¯h , (3)<br />

where L 3 is the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the space, the creati<strong>on</strong> and annihilati<strong>on</strong><br />

operators satisfy the commutati<strong>on</strong> relati<strong>on</strong>s,<br />

[bp, b †<br />

p ′] = δp,p ′, [bp, bp ′] = [b† p, b †<br />

′] = 0, (4)<br />

and the same relati<strong>on</strong>s hold for cp and c † p. We also quantize<br />

the free electromagnetic field as,<br />

Aµ =<br />

√ µ0¯h<br />

L 3<br />

∑<br />

λ=1,2<br />

∑<br />

k<br />

ɛ λ µ<br />

p<br />

( −ikt e<br />

√ a<br />

2k λ )<br />

k + h.c. e ik·x , (5)<br />

where ɛ λ µ denotes the polarizati<strong>on</strong> vector, and a λ†<br />

k and aλ k<br />

are the creati<strong>on</strong> and annihilati<strong>on</strong> operators which satisfy the<br />

follow<strong>in</strong>g commutati<strong>on</strong> relati<strong>on</strong>,<br />

[a λ k, a λ′ †<br />

k ′ ] = δ λλ′<br />

δk,k ′. (6)<br />

We c<strong>on</strong>sider the process, <strong>in</strong> which <strong>on</strong>e phot<strong>on</strong> is emitted<br />

from a charged particle, as shown <strong>in</strong> Fig. 1. Note that<br />

this process is prohibited without the background electric

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!