03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Next, let us c<strong>on</strong>sider the orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> effective dimensi<strong>on</strong>al reducti<strong>on</strong> <strong>in</strong> a str<strong>on</strong>g magnetic<br />

field. When a magnetic field exists, the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transverse directi<strong>on</strong> is discretized by Landau quantizati<strong>on</strong>.<br />

Actually, the energy spectrum for E=0 is given by<br />

ε = ± √ p 2 z + 2eB(n + 1/2 ∓ sz) + m 2 , (7)<br />

where n = 0, 1, · · · corresp<strong>on</strong>d to the Landau levels,<br />

and sz = ±1/2 is the sp<strong>in</strong>. The system effectively becomes<br />

1+1 dimensi<strong>on</strong>al system with <strong>in</strong>f<strong>in</strong>ite tower <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

state: m 2 n,eff ≡ 2eBn + m2 . For the lowest Landau<br />

level (LLL), n = 0 and s = +1/2, the energy is<br />

ε = ± √ p 2 z + m 2 . This is the spectrum <strong>in</strong> 1+1 dimensi<strong>on</strong>s.<br />

This LLL causes the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w as will be shown below.<br />

The divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> w does not mean the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>in</strong>f<strong>in</strong>ite pair producti<strong>on</strong> per unit space-time. The divergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> w rather implies that the vacuum always decays<br />

and produces pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>. The questi<strong>on</strong> is where the<br />

vacuum goes. In the coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> B and E, <strong>on</strong>e can obta<strong>in</strong><br />

the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the n pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong> with LLL as<br />

|〈n pairs|Ω<strong>in</strong>〉| 2<br />

= exp<br />

[<br />

V eB<br />

−<br />

4π2 ( ∫<br />

eET −<br />

dpznpz<br />

)<br />

ln eE<br />

πm2 ]<br />

.<br />

The vacuum persistency probability corresp<strong>on</strong>ds to all<br />

npz’s be<strong>in</strong>g zero <strong>in</strong> Eq. (8), and w is equal to Eq. (5), so<br />

that w diverges at m = 0. At m = 0, this probability is<br />

f<strong>in</strong>ite <strong>on</strong>ly if the follow<strong>in</strong>g equati<strong>on</strong> is satisfied:<br />

∫<br />

eET − dpznpz = 0. (9)<br />

Therefore, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle with the LLL is restricted<br />

by Eq. (9), and l<strong>in</strong>early <strong>in</strong>creases with time. The<br />

higher Landau levels give heavy effective masses <str<strong>on</strong>g>of</str<strong>on</strong>g> order<br />

eB, so that all the c<strong>on</strong>tributi<strong>on</strong>s to the pair producti<strong>on</strong>s<br />

from such modes are suppressed. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle pairs can be calculated:<br />

N = V T e2 E 2<br />

4π 3<br />

πB<br />

E<br />

(8)<br />

πB<br />

coth . (10)<br />

E<br />

At B = 0, N = V T e 2 E 2 /(4π 3 ). The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LLL<br />

is obta<strong>in</strong>ed as<br />

N = V T e2 E 2<br />

4π 3<br />

πB<br />

, (11)<br />

E<br />

which is equal to tak<strong>in</strong>g coth(πB/E) → 1 <strong>in</strong> Eq. (10). In<br />

Fig. 1, the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle for the full c<strong>on</strong>tributi<strong>on</strong><br />

and LLL c<strong>on</strong>tributi<strong>on</strong> are shown. The LLL dom<strong>in</strong>ates<br />

for B > E, so that the effective model for the LLL works<br />

well for B > E.<br />

THEORY OF STRONG MAGNETIC FIELD<br />

In this secti<strong>on</strong>, we study particle producti<strong>on</strong>s com<strong>in</strong>g<br />

from the LLL for QED taken <strong>in</strong>to account the back reacti<strong>on</strong>.<br />

For this purpose, we c<strong>on</strong>sider LLL projected theory,<br />

N(E,B)/N(E,B=0)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LLL<br />

Full<br />

0 0.5 1 1.5<br />

B/E<br />

Figure 1: Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle number to that at B = 0.<br />

The solid l<strong>in</strong>e denotes the c<strong>on</strong>tributi<strong>on</strong> from the LLL, and<br />

the dotted l<strong>in</strong>e denotes the c<strong>on</strong>tributi<strong>on</strong> from all modes.<br />

that is, the wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> is projected to the<br />

LLL state. The wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the LLL is<br />

√ ( ) l<br />

2<br />

eB eB<br />

φl(x, y) =<br />

(x + iy)<br />

2πl! 2<br />

l<br />

(<br />

× exp − eB<br />

4 (x2 + y 2 ) (12)<br />

) ,<br />

where l denotes the angular momentum <strong>in</strong> z directi<strong>on</strong> for<br />

the LLL, and the energy is degenerate for l. One can decompose<br />

the fermi<strong>on</strong> field <strong>in</strong>to the l<strong>on</strong>gitud<strong>in</strong>al mode and<br />

the transverse mode <strong>in</strong> a suitable representati<strong>on</strong> as<br />

(∑<br />

ψ(x) = l φl(x,<br />

)<br />

y)ϕl(t, z)<br />

, (13)<br />

0<br />

where ϕl(t, z) is the two comp<strong>on</strong>ent Dirac field <strong>in</strong> 1+1 dimensi<strong>on</strong>s.<br />

Then the fermi<strong>on</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED <strong>in</strong> 3+1 dimensi<strong>on</strong>s<br />

reduces to that <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Abelian gauge theory <strong>in</strong> 1 + 1<br />

dimensi<strong>on</strong>s:<br />

∫<br />

S = d 4 x ¯ ψ(x)iγ µ Dµψ(x)<br />

∑<br />

∫<br />

dtdz ¯ϕl ′(t, z)i˜γµ D˜ l ′ l<br />

µ ϕl(t, z),<br />

(14)<br />

l,l ′<br />

where ˜γ t and ˜γ z are the gamma matrices <strong>in</strong> 1 + 1 dimensi<strong>on</strong>s<br />

and ˜γ x = ˜γ y = 0. The covariant derivative is def<strong>in</strong>ed<br />

by ˜ Dl′ l<br />

µ = δl′ l∂µ − ieÃl′ l<br />

µ with<br />

à l′ l<br />

µ (t, z) =<br />

∫<br />

dxdyφ ∗ l ′(x, y)φl(x, y)Aµ(x, y, z, t). (15)<br />

à l′ l<br />

µ (t, z) corresp<strong>on</strong>ds to the gauge field <strong>in</strong> U(∞) gauge<br />

theory, s<strong>in</strong>ce Ãl′ l<br />

µ (t, z) is an Hermite matrix, Ã∗l′ l<br />

µ (t, z) =<br />

à ll′<br />

µ (t, z), and the <strong>in</strong>dices l and l ′ run from 0 to ∞. To<br />

simplify the situati<strong>on</strong>, we assume that the At and Az do<br />

not depend <strong>on</strong> the transverse directi<strong>on</strong>s, x and y. Then the l<br />

dependence can be factorized out: Ãl′ l<br />

µ (t, z) = δll ′õ(t, z)<br />

and ϕl(t, z) = ϕ(t, z). The acti<strong>on</strong> <strong>in</strong> Eq. (14) becomes<br />

S eBV⊥<br />

2π<br />

∫<br />

dtdz ¯ϕ(t, z)i˜γ µ Dµϕ(t, ˜ z), (16)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!