03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

theory provides a natural explanati<strong>on</strong> why the observed<br />

dark energy is so small without any f<strong>in</strong>e tun<strong>in</strong>g. This predicts<br />

decay<strong>in</strong>g Λ with t −2 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

universe t. The present age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is t = 10 60 <strong>in</strong><br />

Planckian unit. Thus it naturally expla<strong>in</strong>s why Λ is 10 −120<br />

at present <strong>in</strong> the same unit. The uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory<br />

from an experimental po<strong>in</strong>t view is that it can give us a<br />

testable predicti<strong>on</strong> with the explicit allowed mass and coupl<strong>in</strong>g<br />

strength. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory we expect a scalar<br />

field with mass <str<strong>on</strong>g>of</str<strong>on</strong>g> neV range by allow<strong>in</strong>g a few orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

latitudes which couples to matter via gravitati<strong>on</strong>al strength.<br />

In past experiments prob<strong>in</strong>g a deviati<strong>on</strong> from Newt<strong>on</strong>ian<br />

potential form, massive and huge bodies were used as a test<br />

probes [5]. However, when they measure the gravitati<strong>on</strong>al<br />

effects <strong>in</strong> a short distance, they must suffer from the background<br />

physical process like Coulomb force. In c<strong>on</strong>trast, if<br />

we could use phot<strong>on</strong>-phot<strong>on</strong> scatter<strong>in</strong>g as a probe for such<br />

a new k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> force, the experiment would be free from the<br />

background physical process, s<strong>in</strong>ce the total phot<strong>on</strong>-phot<strong>on</strong><br />

elastic cross secti<strong>on</strong> <strong>in</strong> the optical energy is <strong>on</strong>ly 10 −42 b at<br />

most [6].<br />

However, the biggest issue appears, because the huge<br />

and massive probes were actually demanded to have a sensitivity<br />

to the gravitati<strong>on</strong>al coupl<strong>in</strong>g strength. Nevertheless,<br />

if we could overcome this drawback to use phot<strong>on</strong>s<br />

as the test probe, the method opens up a new w<strong>in</strong>dow to<br />

probe weakly coupl<strong>in</strong>g and low-mass fields (f<strong>in</strong>ite l<strong>on</strong>g<br />

range force). As l<strong>on</strong>g as the field has a f<strong>in</strong>ite mass and coupl<strong>in</strong>g<br />

to matter, we can directly produce low-mass fields as<br />

res<strong>on</strong>ance states such as higgs particle producti<strong>on</strong> <strong>in</strong> high<br />

energy colliders. The producti<strong>on</strong> cross secti<strong>on</strong> is <strong>in</strong> pr<strong>in</strong>ciple<br />

free from the c<strong>on</strong>stra<strong>in</strong>ts by the weak coupl<strong>in</strong>g, if the<br />

center <str<strong>on</strong>g>of</str<strong>on</strong>g> mass system energy Ecms <str<strong>on</strong>g>of</str<strong>on</strong>g> two collid<strong>in</strong>g phot<strong>on</strong>s<br />

is adjusted to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ance po<strong>in</strong>t. In the<br />

follow<strong>in</strong>g secti<strong>on</strong>s we discuss how to realize the phot<strong>on</strong>phot<strong>on</strong><br />

collisi<strong>on</strong> system and the sensitivity to the coupl<strong>in</strong>g<br />

as weak as gravitati<strong>on</strong>al coupl<strong>in</strong>g for the mass range well<br />

below optical frequency 1 eV.<br />

QUASI-PARALLEL SYSTEM OF<br />

PHOTON-PHOTON COLLISIONS<br />

If we are <strong>in</strong>terested <strong>in</strong> extremely low-mass ranges even<br />

below meV, we have to reduce the CMS energy <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>phot<strong>on</strong><br />

collisi<strong>on</strong>s compared to the <strong>in</strong>cident phot<strong>on</strong> energy if<br />

optical laser fields are assumed. As l<strong>on</strong>g as the res<strong>on</strong>ance is<br />

allowed to decay <strong>in</strong>to <strong>on</strong>ly two phot<strong>on</strong>s, the scatter<strong>in</strong>g process<br />

looks like elastic scatter<strong>in</strong>g even if a low-mass field<br />

is exchanged via the res<strong>on</strong>ance state <strong>in</strong> CMS. Thus there is<br />

no frequency shift <strong>in</strong> the f<strong>in</strong>al state <strong>in</strong> CMS. However, if we<br />

boost this system to the directi<strong>on</strong> perpendicular to the collid<strong>in</strong>g<br />

axis, the frequency shift takes place al<strong>on</strong>g that boost<br />

axis. In the forward directi<strong>on</strong> <strong>on</strong> the boost axis we expect a<br />

frequency up shift to close to the double <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident frequency,<br />

while a zero frequency phot<strong>on</strong> must be emitted to<br />

the backward directi<strong>on</strong> due to the energy-momentum c<strong>on</strong>servati<strong>on</strong><br />

<strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the exchanged<br />

field. We refer this boosted system as the quasi-parallel<br />

system (QPS). This may be <strong>in</strong>terpreted as if the sec<strong>on</strong>d harm<strong>on</strong>ic<br />

phot<strong>on</strong> is generated from the n<strong>on</strong>l<strong>in</strong>ear vacuum resp<strong>on</strong>se.<br />

This could be an <strong>in</strong>terest<strong>in</strong>g analogy to sec<strong>on</strong>d harm<strong>on</strong>ic<br />

generati<strong>on</strong> due to the n<strong>on</strong>l<strong>in</strong>ear resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a crystal<br />

with a laser <strong>in</strong>jecti<strong>on</strong> which was pi<strong>on</strong>eered by Franken<br />

et al. [7]. Inversely if we realize the QPS as a laboratory<br />

frame, the corresp<strong>on</strong>d<strong>in</strong>g CMS energy can be very much<br />

lowered. The CMS energy with variables <strong>in</strong> QPS can be<br />

def<strong>in</strong>ed as<br />

Ecms ∼ 2ϑω, (1)<br />

where ϑ is def<strong>in</strong>ed as a half <strong>in</strong>cident angle between two<br />

<strong>in</strong>com<strong>in</strong>g phot<strong>on</strong>s with ϑ ≪ 1 and ω is the beam energy<br />

<strong>in</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h = c = 1. This relati<strong>on</strong> <strong>in</strong>dicates that we have<br />

two experimental handles to adjust Ecms. If we take the<br />

head-<strong>on</strong> collisi<strong>on</strong> geometry, we have to <strong>in</strong>troduce very l<strong>on</strong>g<br />

wavelength as the <strong>in</strong>cident phot<strong>on</strong>s. However, it is not too<br />

difficult to <strong>in</strong>troduce the very small <strong>in</strong>cident angle. In such<br />

a case Ecms can be lowered by keep<strong>in</strong>g ω c<strong>on</strong>stant. We<br />

also know that the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photo-phot<strong>on</strong> scatter<strong>in</strong>g<br />

<strong>in</strong> QED process σqed <strong>in</strong> QPS is quite suppressed due to the<br />

fourth power dependence <strong>on</strong> the <strong>in</strong>cident angle which is<br />

expressed as σqed ∼ (α 2 /m 4 e) 2 ω 6 ϑ 4 with the f<strong>in</strong>e structure<br />

c<strong>on</strong>stant α and electr<strong>on</strong> mass me [8]. Therefore, the low<br />

frequency phot<strong>on</strong>s <strong>in</strong> QPS is the best system to probe such<br />

a low-mass field.<br />

QPS BY FOCUSING WITH SINGLE<br />

GAUSSIAN LASER BEAM<br />

However, it is difficult to <strong>in</strong>troduce two collid<strong>in</strong>g phot<strong>on</strong><br />

beams which satisfy the small <strong>in</strong>cident angle based <strong>on</strong> the<br />

simple geometrical optics due to the wavy nature <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

<strong>in</strong> the diffracti<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s. Below meV range<br />

we are naturally led to <strong>in</strong>troduce a geometry by focus<strong>in</strong>g a<br />

s<strong>in</strong>gle laser beam as illustrated <strong>in</strong> Fig.1. What is important<br />

here is that <strong>in</strong> the diffracti<strong>on</strong> limit there are uncerta<strong>in</strong>ties <strong>on</strong><br />

the <strong>in</strong>cident momentum due to the uncerta<strong>in</strong>ty pr<strong>in</strong>ciple, <strong>in</strong><br />

other words, there are uncerta<strong>in</strong>ties <strong>on</strong> the <strong>in</strong>cident angles<br />

between two phot<strong>on</strong>s am<strong>on</strong>g the s<strong>in</strong>gle beam, even though<br />

phot<strong>on</strong>s are <strong>in</strong> the degenerated state at the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

laser crystal. This should be c<strong>on</strong>trasted to the case <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

energy collider where the momentum spread <str<strong>on</strong>g>of</str<strong>on</strong>g> each collid<strong>in</strong>g<br />

particle or the uncerta<strong>in</strong>ty based <strong>on</strong> the de Broglie<br />

length is negligibly small compared to the magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relevant momentum exchanges they are <strong>in</strong>terested <strong>in</strong>. This<br />

different <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> becomes critically important for<br />

the follow<strong>in</strong>g discussi<strong>on</strong>s.<br />

DYNAMICS OF PHOTON-PHOTON<br />

SCATTERING<br />

As the simplest coupl<strong>in</strong>g between two phot<strong>on</strong>s and a<br />

low-mass field we focus <strong>on</strong> the quantum anomaly type coupl<strong>in</strong>g<br />

g 2 /M which <strong>in</strong>cludes square <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge g to<br />

couple virtual fermi<strong>on</strong> loops to two external phot<strong>on</strong>s and a<br />

dimensi<strong>on</strong>al coupl<strong>in</strong>g 1/M to low-mass neutral fields [9].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!