03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The <strong>in</strong>tegrand can be written as<br />

∫<br />

⟨ϕh(x)∂iφ(ω)⟩ = dτe iωτ<br />

( )<br />

∂<br />

⟨ϕh(x)ϕh(y)⟩<br />

∂yi y=z(τ)<br />

∫<br />

= − dτe iωτ<br />

(<br />

∂P (x, ω)<br />

∂xi )<br />

, (15)<br />

where<br />

∫<br />

P (x, ω) = dτ<br />

e iωτ<br />

(x 0 − z 0 (τ) − iϵ) 2 − (x 1 − z 1 (τ)) 2 − x 2 ⊥<br />

x 2 ⊥ = (x2 ) 2 + (x 3 ) 2 is the transverse distance. The τ <strong>in</strong>tegral<br />

can be calculated by the c<strong>on</strong>tour <strong>in</strong>tegral. The residues<br />

are located where the <strong>in</strong>variant length between the observed<br />

po<strong>in</strong>t x and a po<strong>in</strong>t <strong>on</strong> the particle’s trajectory vanishes.<br />

The c<strong>on</strong>diti<strong>on</strong> is noth<strong>in</strong>g but the c<strong>on</strong>diti<strong>on</strong> that the radiati<strong>on</strong><br />

field propagates <strong>on</strong> the light c<strong>on</strong>e. Fig.1 shows such<br />

a situati<strong>on</strong>. It is <strong>in</strong>terest<strong>in</strong>g that the c<strong>on</strong>diti<strong>on</strong> for residues<br />

has a soluti<strong>on</strong> <strong>on</strong> an <strong>in</strong>tersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the light-c<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer<br />

and the virtual path <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle (dotted l<strong>in</strong>e <strong>in</strong> the<br />

left wedge). We skip the calculati<strong>on</strong>s and show the f<strong>in</strong>al<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms;<br />

⟨ϕI(x)ϕh(y)⟩ + ⟨ϕh(x)ϕI(y)⟩ (16)<br />

=<br />

×<br />

where<br />

−iae2xiy i<br />

(4π) 2ρ0(x) 2ρ0(y) 2<br />

[<br />

e<br />

x y<br />

−iω(τ−−τ e<br />

+ e<br />

− e<br />

∫<br />

dω 1<br />

2π 1 − e−2πω/a − ) h(−ω) ( aL2 x<br />

2ρ0(x)<br />

x y<br />

−iω(τ−−τ− ) − h(ω) ( aL2y 2ρ0(y)<br />

x<br />

−iω(τ+ −τ y<br />

x<br />

−iω(τ− − iω<br />

a<br />

)<br />

iω )<br />

+<br />

a<br />

− ) h(−ω) ( − aL2x iω )<br />

− Zx(−ω)<br />

2ρ0(x) a<br />

y<br />

−τ+ ) h(ω) ( − aL2y iω ) ]<br />

+ Zy(−ω)<br />

2ρ0(y) a<br />

Zx(ω) = e πω/a θ(x 0 − x 1 ) + θ(x 1 − x 0 ) (17)<br />

L 2 x = −x µ xµ + 1<br />

a2 , L2y = −y µ yµ + 1<br />

. (18)<br />

a2 Partial Cancellati<strong>on</strong><br />

The correlati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous terms<br />

(13) depends <strong>on</strong>ly <strong>on</strong> τ−. The <strong>in</strong>terference terms c<strong>on</strong>ta<strong>in</strong><br />

both <str<strong>on</strong>g>of</str<strong>on</strong>g> terms depend<strong>in</strong>g <strong>on</strong> τ− and τ+; the first term <strong>in</strong> the<br />

parenthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> (17) depends <strong>on</strong>ly <strong>on</strong> τ−, so it is the term<br />

that may cancel the <strong>in</strong>homogeneous terms (i.e. the Unruh<br />

radiati<strong>on</strong>). Us<strong>in</strong>g the relati<strong>on</strong><br />

h(ω) + h(−ω) = e2<br />

6π (ω2 + a 2 )|h(ω)| 2 , (19)<br />

<strong>on</strong>e can show that a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms<br />

iae2xiy i<br />

(4π) 2ρ0(x) 2ρ0(y) 2<br />

×<br />

∫ x y<br />

−iω(τ<br />

dω e −−τ− 2π<br />

)<br />

1 − e−2πω/a ( iω<br />

h(−ω)<br />

a<br />

)<br />

+ h(ω)iω<br />

a<br />

(20)<br />

.<br />

cancels the first correcti<strong>on</strong> term <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>homogeneous part<br />

<strong>in</strong> (13). This term was obta<strong>in</strong>ed by tak<strong>in</strong>g a derivative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x<br />

iωτ e − <strong>in</strong> P (x, ω). But note that the cancellati<strong>on</strong> occurs <strong>on</strong>ly<br />

partially. Furthermore, the τ+-dependent terms <strong>in</strong> the <strong>in</strong>terference<br />

terms cannot be canceled with the Unruh radiati<strong>on</strong>.<br />

The Energy Momentum Tensor<br />

Given the 2-po<strong>in</strong>t functi<strong>on</strong>, we can calculate the energy<br />

momentum tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong><br />

⟨Tµν(x)⟩ = ⟨: ∂µϕ∂νϕ − 1<br />

2 gµν∂ α ϕ∂αϕ :⟩. (21)<br />

It is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the classical and the fluctuati<strong>on</strong> parts; Tµν =<br />

Tcl,µν + Tfluc,µν. The classical part is given by<br />

Tcl,µν ∼ e2∂µρ0∂νρ0 (4π) 2ρ4 . (22)<br />

0<br />

It corresp<strong>on</strong>ds to the energy momentum tensor <str<strong>on</strong>g>of</str<strong>on</strong>g> the Larmor<br />

radiati<strong>on</strong>. From (10) it can be seen to be proporti<strong>on</strong>al<br />

to a 2 /r 2 where a is the accelerati<strong>on</strong> and r is the spacial<br />

distance from the particle to the observer. Tfluc,µν is the<br />

energy momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al radiati<strong>on</strong><br />

Tfluc,µν = (xi ) 2<br />

− e2 a 2 L 2 x<br />

(4π) 2 ρ 3 0<br />

(<br />

ρ 2 0<br />

[ (e 2<br />

π Im − 6ma2 I1L 2 x<br />

ρ0<br />

)<br />

Tcl,µν<br />

mI3 ∂µτ x −∂ντ x − + 2mI1<br />

ρ0L2 (xµ∂νρ0 + xν∂µρ0)<br />

x<br />

+ e2Im 12πL2 (xµ∂ντ<br />

x<br />

x − + xν∂µτ x −)<br />

− e2Im (∂µτ<br />

24πρ0<br />

x −∂νρ0 + ∂ντ x −∂µρ0)<br />

) ]<br />

(23)<br />

where I1 = 3<br />

2mae2 , I3 ∼ Ω2 −I1 ≪ a2I1, Im = I3+a2 I1 ∼<br />

a2I1. Hence, these terms orig<strong>in</strong>at<strong>in</strong>g from the fluctuat<strong>in</strong>g<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle is proporti<strong>on</strong>al to a3 , and smaller<br />

by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> a compared to the above Larmor radiati<strong>on</strong>.<br />

Though they have different angular distributi<strong>on</strong>, there is an<br />

overall factor (x2 i ) <strong>in</strong> fr<strong>on</strong>t and they vanish at the forward<br />

directi<strong>on</strong>. Together with the l<strong>on</strong>g relaxati<strong>on</strong> time discussed<br />

<strong>in</strong> [2], the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong> seems to be very<br />

difficult experimentally.<br />

REFERENCES<br />

[1] S. Iso, Y. Yamamoto and S. Zhang, arXiv:1011.4191 [hep-th].<br />

[2] S. Iso, Y. Yamamoto and S. Zhang, <strong>in</strong> the same proceed<strong>in</strong>g,<br />

“Can we detect ”Unruh radiati<strong>on</strong>” <strong>in</strong> the high <strong>in</strong>tensity laser?”<br />

[3] P. Chen and T. Tajima, Phys. Rev. Lett. 83 (1999) 256.<br />

[4] P. R. Johns<strong>on</strong> and B. L. Hu, arXiv:quant-ph/0012137.<br />

Phys. Rev. D 65 (2002) 065015 [arXiv:quant-ph/0101001].<br />

P. R. Johns<strong>on</strong> and B. L. Hu, Found. Phys. 35, 1117 (2005)<br />

[arXiv:gr-qc/0501029].<br />

[5] D. J. Ra<strong>in</strong>e, D. W. Sciama and P. G. Grove, Proc. R. Soc.<br />

L<strong>on</strong>d. A (1991) 435, 205-215

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!