03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

with C (2)<br />

µ = Γ (2)<br />

µ − ˆ L (1) Γ (1)<br />

µ + ˆ L (1)2 Γ (0)<br />

µ /2. Then, we have<br />

V (0)µ C (2)<br />

µ = mca2 0x0<br />

4kz<br />

mc<br />

p ′′<br />

[ ( ) (<br />

1 1<br />

+<br />

η L2 R<br />

+ 1<br />

L 2<br />

3 a0x0<br />

l<br />

16 kz<br />

˜X ′′2 + l2<br />

4<br />

)<br />

mc<br />

p ′′<br />

]<br />

η<br />

. (11)<br />

Here, R ≡ ([ ∂2 xa0x(x0) ] ) −1<br />

/a0x0 is the scale length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the field curvature. S<strong>in</strong>ce the new Hamilt<strong>on</strong>ian, −Γ ′′<br />

0, does<br />

not c<strong>on</strong>ta<strong>in</strong> the variable Z ′′ , the corresp<strong>on</strong>d<strong>in</strong>g comp<strong>on</strong>ent<br />

p ′′<br />

η is found to be c<strong>on</strong>stant. Then, the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

<strong>in</strong> the x-directi<strong>on</strong> are reduced to<br />

dX ′′<br />

dη<br />

dP ′′<br />

x<br />

dη<br />

′′ P x<br />

= − , (12)<br />

kzpη0<br />

= −mca0x0 l<br />

2<br />

[<br />

1<br />

L +<br />

( )<br />

1 1<br />

+<br />

L2 R<br />

˜X ′′<br />

]<br />

. (13)<br />

These equati<strong>on</strong>s determ<strong>in</strong>e the particle moti<strong>on</strong> up to the<br />

sec<strong>on</strong>d order <str<strong>on</strong>g>of</str<strong>on</strong>g> ϵ, which varies slowly compared with the<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> the fast oscillati<strong>on</strong> appeared <strong>in</strong> the zeroth-order<br />

orbit.<br />

In the case 1/L 2 +1/R ≥ 0, we obta<strong>in</strong> a slow oscillatory<br />

moti<strong>on</strong> given by<br />

P ′′<br />

x = α s<strong>in</strong> θη + P (2)<br />

x0<br />

X ′′ = − α 1<br />

(cos θη − 1) +<br />

mc θζ0kz<br />

cos θη, (14)<br />

P (2)<br />

x0<br />

mca0x0<br />

l<br />

s<strong>in</strong> θη + X′′ 0 ,<br />

θ<br />

(15)<br />

where θ = l √ (1/L 2 + 1/R) /2, α is a c<strong>on</strong>-<br />

stant determ<strong>in</strong>ed by the <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong> as α =<br />

mca0x0θ ( 1 − l/ ( 2Lθ 2) − 7l/ (8L) ) , X ′′<br />

0 is the <strong>in</strong>itial<br />

particle positi<strong>on</strong> and P (2)<br />

x0 is the sec<strong>on</strong>d-order <strong>in</strong>itial value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P ′′<br />

x calculated by the sec<strong>on</strong>d-order backward Lie transformati<strong>on</strong>.<br />

It is remarkably noted that the unbounded secular<br />

moti<strong>on</strong> orig<strong>in</strong>at<strong>in</strong>g from the first-order p<strong>on</strong>deromotive<br />

force given <strong>in</strong> Eq. (10) is changed to the bounded soluti<strong>on</strong>,<br />

Eqs. (14) and (15), by tak<strong>in</strong>g <strong>in</strong>to account the sec<strong>on</strong>d order<br />

curvature terms. This moti<strong>on</strong> corresp<strong>on</strong>ds to a betatr<strong>on</strong><br />

oscillati<strong>on</strong> by which the particle is c<strong>on</strong>f<strong>in</strong>ed <strong>in</strong> the f<strong>in</strong>ite<br />

radial regi<strong>on</strong>. Note that s<strong>in</strong>ce the amplitude factor α and<br />

the period θ are def<strong>in</strong>ed by the local gradient and curvature<br />

at the <strong>in</strong>itial particle positi<strong>on</strong>, they are valid <strong>on</strong>ly <strong>in</strong> the<br />

regi<strong>on</strong> where the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the curvature is sufficiently<br />

small dur<strong>in</strong>g <strong>on</strong>e cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g period oscillati<strong>on</strong>s.<br />

In the case 1/L2 + 1/R < 0, Eqs. (12) and (13) yield to<br />

the soluti<strong>on</strong><br />

P ′′<br />

x =<br />

(2)<br />

α + P x0<br />

e<br />

2<br />

θη +<br />

(2)<br />

−α + P x0<br />

e<br />

2<br />

−θη . (16)<br />

This soluti<strong>on</strong> <strong>in</strong>dicates that the particle is rapidly ejected<br />

from the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large laser field amplitude. Tak<strong>in</strong>g the<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (16) assum<strong>in</strong>g θη ∼<br />

O (ϵ), Eq. (16) leads to<br />

P ′′<br />

x = αθη + P (2)<br />

x0<br />

X ′′ = α<br />

mc<br />

1<br />

kzζ0<br />

, (17)<br />

θ<br />

2 η2 +<br />

P (2)<br />

x0<br />

mc<br />

1<br />

kzζ0<br />

η + X ′′<br />

0 . (18)<br />

This soluti<strong>on</strong> is c<strong>on</strong>sistent with that obta<strong>in</strong>ed <strong>in</strong> Eq. (10)<br />

up to the first order, though the sec<strong>on</strong>d order collecti<strong>on</strong> is<br />

<strong>in</strong>cluded <strong>in</strong> Eqs. (17) and (18).<br />

Here, we have neglected the z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the vector<br />

potential, az, for simplicity. The <strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> az may cause<br />

modulati<strong>on</strong> to the amplitude factor α and/or the period θ,<br />

which will be discussed separately.<br />

SUMMARY<br />

We derived a equati<strong>on</strong> system describ<strong>in</strong>g the relativistic<br />

p<strong>on</strong>deromotive force and the related particle dynamics<br />

<strong>in</strong> a transversely-focused l<strong>in</strong>early-polarized laser field<br />

up to the sec<strong>on</strong>d order with respect to ϵ. In the first order,<br />

we obta<strong>in</strong>ed the p<strong>on</strong>deromotive force proporti<strong>on</strong>al to<br />

the field gradient <strong>in</strong> the x- and y-directi<strong>on</strong>s that is essentially<br />

the same as the result <strong>in</strong> Ref. [6]. In the sec<strong>on</strong>d order,<br />

we found that the particle can exhibit a slow period<br />

betatr<strong>on</strong>-like oscillatory moti<strong>on</strong> characterized by the curvature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser field amplitude. This suggests that the<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the curvature is important <strong>in</strong> c<strong>on</strong>f<strong>in</strong><strong>in</strong>g the particle<br />

and keep<strong>in</strong>g the laser-particle <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> transversely<br />

localized high-<strong>in</strong>tensity laser fields. The betatr<strong>on</strong>-like oscillati<strong>on</strong><br />

may cause <strong>in</strong>tense radiati<strong>on</strong> that will be discussed<br />

<strong>in</strong> a future paper. The present result up to the first order<br />

and the expansi<strong>on</strong> form, Eqs. (17) and (18), up to the sec<strong>on</strong>d<br />

order are c<strong>on</strong>sistent with those obta<strong>in</strong>ed by perform<strong>in</strong>g<br />

the perturbati<strong>on</strong> expansi<strong>on</strong> directly to the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

However, <strong>in</strong> the present analysis, the n<strong>on</strong>local soluti<strong>on</strong>s,<br />

Eqs. (14), (15) and (16) are obta<strong>in</strong>ed for the first time<br />

through the Lie perturbati<strong>on</strong> approach.<br />

REFERENCES<br />

[1] E. A. Startsev and C. J. McK<strong>in</strong>strie, Phys. Rev. E 55 (1996)<br />

7527.<br />

[2] P. Gibb<strong>on</strong>, ”Short Pulse Laser Interacti<strong>on</strong>s with Matter”, Imperial<br />

College Press, L<strong>on</strong>d<strong>on</strong>, p. 36 (2005).<br />

[3] J. R. Cary and R. G. Littlejohn, Ann. Phys. 151 (1983) 1.<br />

[4] Y. Kishimoto, S. Tokuda and K. Sakamoto, Phys. Plasmas 2<br />

(1995) 1316.<br />

[5] K. Imadera and Y. Kishimoto, accepted for publicati<strong>on</strong> <strong>in</strong><br />

Plasma Fusi<strong>on</strong> Res..<br />

[6] N. Iwata, K. Imadera and Y. Kishimoto, Plasma Fusi<strong>on</strong> Res.<br />

5 (2010) 028.<br />

[7] E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1 (1970)<br />

2738.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!