03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

Fly<strong>in</strong>g Mirror as a tool to access ultra-high fields ∗<br />

M. Kando, A. S. Pirozhkov, T. Zh. Esirkepov, T. Nakamura, J. Koga, H. Kotaki<br />

Y. Hayashi, S. V. Bulanov<br />

JAEA, Kizugawa, Kyoto 619-0215, Japan<br />

Thanks to the recent progress <str<strong>on</strong>g>of</str<strong>on</strong>g> laser technology, there<br />

are grow<strong>in</strong>g <strong>in</strong>terests to explore ultra-high fields (electromagnetic<br />

fields) by focus<strong>in</strong>g <strong>in</strong>tense, ultra-short laser<br />

pulses down to a few micr<strong>on</strong> sizes. Presented here is a<br />

study to possibility reach (or boost) such ultra-high fields<br />

us<strong>in</strong>g a new c<strong>on</strong>cept employ<strong>in</strong>g the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tense<br />

laser pulses with plasma. The c<strong>on</strong>cept uses break<strong>in</strong>g waves<br />

excited by ultra-short, <strong>in</strong>tense laser pulses <strong>in</strong> plasma. We<br />

present example parameters to reach the Schw<strong>in</strong>ger field<br />

and review the recent experimental progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g<br />

mirror c<strong>on</strong>cept.<br />

INTRODUCTION<br />

S<strong>in</strong>ce the <strong>in</strong>novati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chirped pulse amplificati<strong>on</strong><br />

(CPA) technique [1], the peak power <str<strong>on</strong>g>of</str<strong>on</strong>g> lasers has been <strong>in</strong>creas<strong>in</strong>g<br />

and the focused irradiance has reached as high as<br />

10 22 W/cm 2 [2, 3]. The extreme light <strong>in</strong>frastructure (ELI)<br />

project[4] is be<strong>in</strong>g promoted and the goal is to reach 10 26<br />

W/cm 2 . The unprecedented irradiances allow us to explore<br />

a new regime <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, which has previously not been<br />

accessible experimentally. Theoretically there are challeng<strong>in</strong>g<br />

tasks which can be d<strong>on</strong>e <strong>in</strong> the high electromagnetic<br />

fields. One example is to explore the so-called quantum<br />

electrodynamics critical field or the Schw<strong>in</strong>ger field,<br />

at which vacuum breaks down and therefore n<strong>on</strong>-virtual<br />

electr<strong>on</strong>-positr<strong>on</strong> pairs are created from vacuum. Assum<strong>in</strong>g<br />

a direct-current (DC) electric field the QED critical<br />

field Ec = 1.3 × 10 18 V/m is obta<strong>in</strong>ed. The associated<br />

laser irradiance is Ic = 2.3 × 10 29 W/cm 2 , which is 7 orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher than the world record and still<br />

3 orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher than that at the planned ELI<br />

project. Can we use the present laser technology to reach<br />

the Schw<strong>in</strong>ger field?<br />

The answer might be ’Yes’. There is theoretical work <strong>in</strong>dicat<strong>in</strong>g<br />

lower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-positr<strong>on</strong> creati<strong>on</strong><br />

from vacuum[5, 6, 7]. Here <strong>in</strong> additi<strong>on</strong> to the work, we recall<br />

the proposal that an plasma device –relativistic fly<strong>in</strong>g<br />

mirror– can be used to <strong>in</strong>tensify the laser pulse as shown <strong>in</strong><br />

Fig. 1[8]. Fly<strong>in</strong>g mirrors are electr<strong>on</strong> density cusps propagat<strong>in</strong>g<br />

almost at the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>in</strong> tenuous plasma.<br />

Such electr<strong>on</strong> density cusps are formed when plasma wake<br />

waves excited by <strong>in</strong>tense, ultrashort laser pulses are break<strong>in</strong>g.<br />

The fly<strong>in</strong>g mirror reflects an <strong>in</strong>com<strong>in</strong>g laser, and the<br />

reflected pulse is upshifted due to the double Doppler effect<br />

∗ Work <strong>in</strong> part supported by JAEA and KAKENHI No. 20244065<br />

and is compressed as well. In additi<strong>on</strong>, the fly<strong>in</strong>g mirror<br />

may focus the laser pulse. Thus, the fly<strong>in</strong>g mirror can be<br />

a novel device that enhances the laser focused irradiance<br />

drastically. In this paper, we discuss the possibility to access<br />

ultra-high electromagnetic fields employ<strong>in</strong>g the fly<strong>in</strong>g<br />

mirror.<br />

THEORY<br />

We shall c<strong>on</strong>sider a mirror mov<strong>in</strong>g at the speed vM =<br />

βMc, where βM denotes the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the mirror speed to the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c. The reflected frequency <strong>in</strong> the laboratory<br />

frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference is expressed as<br />

ωr = ωs<br />

1 + βM cos θ<br />

, (1)<br />

1 − βM cos θr<br />

where ωs is the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident source pulse and<br />

π −θ and θr are angles <strong>in</strong> the laboratory frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

between the wave propagati<strong>on</strong> directi<strong>on</strong> and the mirror velocity<br />

for the <strong>in</strong>cident and reflected waves, respectively. If<br />

the <strong>in</strong>cident angle satisfies the c<strong>on</strong>diti<strong>on</strong> −π/2 < θ < π/2,<br />

the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflected pulse is upshifted. The maximum<br />

upshift is achieved when θ = θr = 0. In this case the<br />

reflected frequency is approximately equal to ωr ≈ 4γ 2 M ωs<br />

for γM ≫ 1, where γM = 1/ √ 1 − β 2 M .<br />

The electric field amplitude <strong>in</strong> the reflected wave is ex-<br />

pressed as<br />

Er = R 1/2 Es<br />

( ωr<br />

ωs<br />

)<br />

, (2)<br />

where R is the reflectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the mov<strong>in</strong>g mirror <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the phot<strong>on</strong> number. For a mirror with a paraboloidal shape,<br />

the reflected light can be focused down to a spot equal to<br />

λs/(2γM). In this case the focused irradiance is given by<br />

Ir = 64Rγ 6 M<br />

( D<br />

λs<br />

) 2<br />

Is. (3)<br />

Here Is is the irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>cident source pulse <strong>on</strong><br />

the mirror with a waist <str<strong>on</strong>g>of</str<strong>on</strong>g> D. As expla<strong>in</strong>ed <strong>in</strong> the previous<br />

secti<strong>on</strong> fly<strong>in</strong>g mirrors are created dur<strong>in</strong>g the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>tense, utra-short laser pulses with tenuous plasma. The<br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the fly<strong>in</strong>g mirror is equal to the phase velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma wave, i.e. βMc = βphc. The phase velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma wave is approximately equal to the group velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the laser <strong>in</strong> the plasma βphc = c[1−(ωpe/ω) 2 ] 1/2 ,<br />

where ωpe = (4πnee 2 /m) 1/2 , m and e are the electr<strong>on</strong><br />

mass and charge, and ω is the laser angular frequency.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!