03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(a) l<strong>on</strong>gitud<strong>in</strong>al momentum distributi<strong>on</strong> with fixed<br />

transverse momentum p⊥ = 0<br />

(b) transverse momentum distributi<strong>on</strong> with fixed<br />

l<strong>on</strong>gitud<strong>in</strong>al momentum √ eEpz = 1<br />

Figure 3: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> created particles under the c<strong>on</strong>stant electric field. m2<br />

2eE = 0.1.<br />

These features are c<strong>on</strong>sistent with the semi-classical tunnel<strong>in</strong>g<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair creati<strong>on</strong> [10]. However, the l<strong>on</strong>gitud<strong>in</strong>al<br />

momenta that particles br<strong>in</strong>g when they are created<br />

are not exactly zero but broadened around zero due<br />

to quantum fluctuati<strong>on</strong>. After created, particles are accelerated<br />

by the electric field accord<strong>in</strong>g to the classical equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>: pz = eEt + c<strong>on</strong>st. In c<strong>on</strong>trast, there is no<br />

accelerati<strong>on</strong> <strong>in</strong> the transverse directi<strong>on</strong>s and the transverse<br />

momentum distributi<strong>on</strong>s exhibits a Gaussian-like form.<br />

Back reacti<strong>on</strong><br />

Previously, we have treated the pair creati<strong>on</strong> <strong>in</strong> the c<strong>on</strong>stant<br />

electric field. However, if charged particles are created,<br />

they generate further electromagnetic fields and the<br />

orig<strong>in</strong>al field should be modified. This effect, called back<br />

reacti<strong>on</strong>, is not negligible under a str<strong>on</strong>g field where pair<br />

creati<strong>on</strong> happens <strong>in</strong>tensively. To take account <str<strong>on</strong>g>of</str<strong>on</strong>g> the back<br />

reacti<strong>on</strong>, we treat an electromagnetic field as a dynamical<br />

variable obey<strong>in</strong>g the Maxwell equati<strong>on</strong>s. The uniformity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the system reduces the Maxwell equati<strong>on</strong>s <strong>in</strong>to the s<strong>in</strong>gle<br />

equati<strong>on</strong><br />

dEz<br />

dt = −d2 A 3<br />

dt 2 = −jz, (7)<br />

Figure 4: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitud<strong>in</strong>al momentum<br />

distributi<strong>on</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the back reacti<strong>on</strong> is taken <strong>in</strong>to<br />

account. m2 = 0.01 and e = 1.<br />

2eE0<br />

where jz is the charge current generated by created particles<br />

and antiparticles.<br />

We have numerically solved the coupled equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> (1)<br />

and (7). The results are shown <strong>in</strong> Figs. 4 and 5. The l<strong>on</strong>gitud<strong>in</strong>al<br />

momentum distributi<strong>on</strong> (Fig. 4) oscillates <strong>in</strong> momentum<br />

space, and also the current and the electric field<br />

(Fig. 5) show oscillati<strong>on</strong>s. These oscillati<strong>on</strong>s can be understood<br />

as usual plasma oscillati<strong>on</strong>.<br />

Other than the plasma oscillati<strong>on</strong>, which is a classical<br />

dynamics, also quantum effects such as the Pauli block<strong>in</strong>g<br />

and <strong>in</strong>terference between matter fields play remarkable<br />

roles <strong>in</strong> the time evoluti<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference, the<br />

momentum distributi<strong>on</strong> shows f<strong>in</strong>e oscillati<strong>on</strong>s at later time<br />

(Fig. 4).<br />

EFFECTS OF MAGNETIC FIELDS<br />

S<strong>in</strong>ce the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitud<strong>in</strong>al color-magnetic fields<br />

as well as color-electric fields is predicted by the framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the CGC [6], we study the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>gitud<strong>in</strong>al<br />

magnetic field <strong>on</strong> the pair creati<strong>on</strong>. As illustrated <strong>in</strong> Fig. 6,<br />

under the l<strong>on</strong>gitud<strong>in</strong>al magnetic field, transverse momentum<br />

p⊥ is discretized <strong>in</strong>to the Landau levels as<br />

p 2 ⊥ −→ (2n + 1)eB (n = 0, 1, 2, . . . ). (8)<br />

Notice that even the lowest Landau level depends <strong>on</strong> the<br />

magnetic field strength B for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar particles.<br />

S<strong>in</strong>ce the transverse momentum acts as an effective mass<br />

m2 ⊥ = m2 + p2 ⊥ , scalar particles become effectively heavy<br />

under a str<strong>on</strong>g magnetic field, so that their pair producti<strong>on</strong><br />

(a) current density (b) electric field<br />

Figure 5: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge current density and<br />

the electric field. e = 1. (a = m2<br />

2eE0 ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!