03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE QED EFFECTIVE ACTION<br />

In quantum field theory, the quantum correcti<strong>on</strong>s to classical<br />

Maxwell electrodynamics are encoded <strong>in</strong> the ”effective<br />

acti<strong>on</strong>” Γ[A] [14, 15]. For example, the polarizati<strong>on</strong><br />

tensor Πµν = δ2Γ c<strong>on</strong>ta<strong>in</strong>s the electric permittivity ϵij<br />

δAµδAν<br />

and the magnetic permeability µij <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum vacuum,<br />

and is obta<strong>in</strong>ed by vary<strong>in</strong>g the effective acti<strong>on</strong> Γ[A] with respect<br />

to the external probe Aµ(x). Γ[A] is def<strong>in</strong>ed <strong>in</strong> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum-vacuum persistence amplitude<br />

[ ]<br />

i<br />

⟨0out | 0<strong>in</strong>⟩ = exp {Re(Γ) + i Im(Γ)} (5)<br />

¯h<br />

Re(Γ[A]) describes dispersive effects, such as vacuum birefr<strong>in</strong>gence,<br />

while Im(Γ[A]) describes absorptive effects,<br />

such as vacuum pair producti<strong>on</strong>. The imag<strong>in</strong>ary part encodes<br />

the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum par producti<strong>on</strong> as [14]<br />

Pproducti<strong>on</strong> = 1 − |⟨0out | 0<strong>in</strong>⟩| 2<br />

[<br />

= 1 − exp − 2<br />

]<br />

Im Γ<br />

¯h<br />

≈ 2<br />

Im Γ (6)<br />

¯h<br />

From a computati<strong>on</strong>al perspective, the effective acti<strong>on</strong> is<br />

def<strong>in</strong>ed as [14, 15]<br />

Γ[A] = ¯h ln det [iD/ − m] = ¯h tr ln [iD/ − m] . (7)<br />

Here, D/ ≡ γ µ Dµ, where the covariant derivative operator,<br />

Dµ = ∂µ − i e<br />

¯hc Aµ, def<strong>in</strong>es the coupl<strong>in</strong>g between electr<strong>on</strong>s<br />

and the electromagnetic field Aµ. When the gauge field<br />

Aµ is such that the field strength, Fµν = ∂µAν − ∂νAµ, is<br />

c<strong>on</strong>stant, this effective acti<strong>on</strong> was computed exactly [and<br />

n<strong>on</strong>-perturbatively] by Heisenberg and Euler [1]. For ex-<br />

ample, for a c<strong>on</strong>stant electric field E:<br />

Γ HE [E]<br />

Vol4<br />

= −¯h e2 E 2<br />

8π 2<br />

∫ ∞<br />

0<br />

ds m2<br />

e− eE<br />

s2 s<br />

(<br />

cot(s) − 1 s<br />

+<br />

s 3<br />

(8)<br />

The lead<strong>in</strong>g imag<strong>in</strong>ary part comes from the first pole <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cot(s) functi<strong>on</strong>:<br />

Im Γ HE<br />

Vol4<br />

∼ ¯h e2 E 2 [ ]<br />

π m2<br />

exp −<br />

8π3 e E<br />

THE EFFECTIVE ACTION IN<br />

INHOMOGENEOUS BACKGROUND<br />

FIELDS<br />

It is essential to understand how this c<strong>on</strong>stant field result<br />

(9) is modified for more realistic <strong>in</strong>homogeneous fields,<br />

such as those describ<strong>in</strong>g ultra-short pulse focussed lasers.<br />

This is a difficult task, as standard perturbative effective<br />

field theory techniques do not apply. The first step <strong>in</strong><br />

this directi<strong>on</strong> is motivated by a sem<strong>in</strong>al result <str<strong>on</strong>g>of</str<strong>on</strong>g> Keldysh<br />

[16, 17] for the i<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong> a m<strong>on</strong>ochromatic<br />

time dependent electric field E(t) = E cos(ωt). This <strong>in</strong>troduces<br />

a new scale to the problem, and Keldysh was able<br />

to compute the i<strong>on</strong>izati<strong>on</strong> probability as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

)<br />

(9)<br />

dimensi<strong>on</strong>less adiabaticity parameter γK, that characterized<br />

the fast [γK ≫ 1] and slow [γK ≪ 1] regimes.<br />

[The Keldysh parameter is related to the standard laser<br />

field strength parameter a0 as a0 = 1/γK.] Remarkably,<br />

Keldysh’s WKB result <strong>in</strong>terpolates smoothly between the<br />

n<strong>on</strong>-perturbative tunnel-i<strong>on</strong>izati<strong>on</strong> regime where γK ≪ 1,<br />

and the perturbative multi-phot<strong>on</strong> regime where γK ≫<br />

1. This formalism was generalized to the Heisenberg-<br />

Schw<strong>in</strong>ger effect <strong>in</strong> QED [18, 19, 20], with an analogous<br />

”adiabaticity parameter”<br />

Ppair prod. ∼<br />

γK ≡ mcω<br />

. (10)<br />

eE<br />

⎧ [<br />

⎨ exp −<br />

⎩<br />

πm2c 3<br />

]<br />

eE¯h , γK ≪ 1<br />

) 2 (11)<br />

2mc /¯hω<br />

, γK ≫ 1<br />

( eE<br />

mω<br />

The γK ≪ 1 regime corresp<strong>on</strong>ds to n<strong>on</strong>perturbative tunnel<strong>in</strong>g,<br />

while γK ≫ 1 is the perturbative multiphot<strong>on</strong><br />

regime. In the perturbative multi-phot<strong>on</strong> regime, this QED<br />

pair producti<strong>on</strong> effect has been observed <strong>in</strong> a beautiful experiment<br />

(E-144) at SLAC [21], <strong>in</strong> which a laser pulse collided<br />

with the (highly relativistic) SLAC electr<strong>on</strong> beam,<br />

lead<strong>in</strong>g to n<strong>on</strong>l<strong>in</strong>ear Compt<strong>on</strong> scatter<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g 4-5 phot<strong>on</strong>s,<br />

produc<strong>in</strong>g a high energy gamma phot<strong>on</strong> that decays<br />

<strong>in</strong>to an electr<strong>on</strong>-positr<strong>on</strong> pair. By c<strong>on</strong>trast, it is hoped that<br />

<strong>in</strong> future laser facilities it will be possible to probe deep<br />

<strong>in</strong>to the n<strong>on</strong>perturbative regime where γK ≪ 1, to see the<br />

truly n<strong>on</strong>perturbative Heisenberg-Schw<strong>in</strong>ger effect <str<strong>on</strong>g>of</str<strong>on</strong>g> pair<br />

producti<strong>on</strong> directly from vacuum.<br />

The Keldysh approach captures an enormous amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> important physical <strong>in</strong>formati<strong>on</strong>. Various methods have<br />

been developed which can be used to compute the pair producti<strong>on</strong><br />

probability when the background electric field depends<br />

<strong>on</strong> just <strong>on</strong>e coord<strong>in</strong>ate. The problem can be understood<br />

as a <strong>on</strong>e-dimensi<strong>on</strong>al scatter<strong>in</strong>g problem, based <strong>on</strong><br />

Feynman’s <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positr<strong>on</strong>s as electr<strong>on</strong>s propagat<strong>in</strong>g<br />

backwards <strong>in</strong> time [22]. Then the probability<br />

can be extracted from the reflecti<strong>on</strong> coefficient for<br />

a ”Schröd<strong>in</strong>ger” problem <str<strong>on</strong>g>of</str<strong>on</strong>g> scatter<strong>in</strong>g <strong>in</strong> the time doma<strong>in</strong>.<br />

The reflecti<strong>on</strong> probability can be computed exactly<br />

[numerically], as <strong>in</strong> the quantum k<strong>in</strong>etic approach<br />

[23, 24, 25, 26], or estimated us<strong>in</strong>g semiclassical WKB<br />

arguments [18, 19, 20, 27]. A natural ”<strong>in</strong>verse questi<strong>on</strong>”<br />

arises: can we shape the laser pulses <strong>in</strong> order to enhance<br />

the pair producti<strong>on</strong> effect, or to make it more dist<strong>in</strong>ctive?<br />

PULSE SHAPING EFFECTS FOR<br />

TIME-DEPENDENT FIELDS<br />

C<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g the approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sider<strong>in</strong>g a timedependent<br />

electric field, several recent results suggest that<br />

the peak laser <strong>in</strong>tensity at which appreciable vacuum pair<br />

producti<strong>on</strong> could be observe is <strong>in</strong> the 10 25 − 10 26 W/cm 2<br />

<strong>in</strong>tensity range, which is significant s<strong>in</strong>ce this is the targeted<br />

goal <str<strong>on</strong>g>of</str<strong>on</strong>g> the ELI project, and with<strong>in</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

HiPER facility. An important set <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas [28, 29] is to<br />

comb<strong>in</strong>e multiple pulses, each <str<strong>on</strong>g>of</str<strong>on</strong>g> a lower <strong>in</strong>tensity, and to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!