03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

Unruh radiati<strong>on</strong> and Interference effect ∗<br />

Satoshi Iso † , Yasuhiro Yamamoto ‡ and Sen Zhang § , <strong>KEK</strong>, Tsukuba, Japan<br />

A uniformly accelerated charged particle feels the vacuum<br />

as thermally excited and fluctuates around the classical<br />

trajectory. Then we may expect additi<strong>on</strong>al radiati<strong>on</strong> besides<br />

the Larmor radiati<strong>on</strong>. It is called Unruh radiati<strong>on</strong>. In<br />

this report, we review the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh radiati<strong>on</strong><br />

with an emphasis <strong>on</strong> the <strong>in</strong>terference effect between the<br />

vacuum fluctuati<strong>on</strong> and the radiati<strong>on</strong> from the fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>. Our calculati<strong>on</strong> is based <strong>on</strong> a stochastic treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle under a uniform accelerati<strong>on</strong>. The basics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the stochastic equati<strong>on</strong> are reviewed <strong>in</strong> another report <strong>in</strong> the<br />

same proceed<strong>in</strong>g [2]. In this report, we ma<strong>in</strong>ly discuss the<br />

radiati<strong>on</strong> and the <strong>in</strong>terference effect.<br />

STOCHASTIC ALD EQUATION<br />

The Unruh radiati<strong>on</strong> is the additi<strong>on</strong>al radiati<strong>on</strong> expected<br />

to be emanated by a uniformly accelerated charged particle<br />

[3]. A uniformly accelerated observer feels the quantum<br />

vacuum as thermally excited with the Unruh temperature<br />

TU = a/2πckB. Hence as the ord<strong>in</strong>ary Unruh-de Wit detector,<br />

a charged particle <strong>in</strong>teract<strong>in</strong>g with the radiati<strong>on</strong> field<br />

can be expected to fluctuate around the classical trajectory.<br />

Is there additi<strong>on</strong>al radiati<strong>on</strong> associated with this fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>? It is the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the present report.<br />

In order to formulate the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such fluctuat<strong>in</strong>g<br />

moti<strong>on</strong>, we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic technique. Namely,<br />

we solve a set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerated particle and<br />

the radiati<strong>on</strong> field <strong>in</strong> a semiclassical approximati<strong>on</strong>. By<br />

semiclassical, we mean that the radiati<strong>on</strong> field is treated<br />

as a quantum field while the particle is treated classically.<br />

S<strong>in</strong>ce the accelerated particle dissipates its energy<br />

through the Larmor radiati<strong>on</strong>, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>s<br />

the radiati<strong>on</strong> damp<strong>in</strong>g term. This is the Abraham-<br />

Lorentz-Dirac (ALD) equati<strong>on</strong>. Furthermore, s<strong>in</strong>ce the accelerated<br />

particle feels the M<strong>in</strong>kowski vacuum as thermally<br />

excited, a noise term is also <strong>in</strong>duced <strong>in</strong> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

The stochastic equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the accelerated charged<br />

particle is called the stochastic ALD equati<strong>on</strong> and derived<br />

by [4].<br />

We c<strong>on</strong>sider the scalar QED whose acti<strong>on</strong> is given by<br />

∫<br />

S[z, ϕ, h] = − m<br />

∫<br />

+<br />

dτ √ ˙z µ ∫<br />

˙zµ +<br />

d 4 x 1 2<br />

(∂µϕ)<br />

2<br />

d 4 x j(x; z)ϕ(x). (1)<br />

∗ Based <strong>on</strong> a poster presentati<strong>on</strong> by Y.Yamamoto and [1].<br />

† satoshi.iso@kek.jp<br />

‡ yamayasu@post.kek.jp<br />

§ zhangsen@post.kek.jp<br />

where<br />

∫<br />

j(x; z) = e<br />

dτ √ ˙z µ ˙zµδ 4 (x − z(τ)), (2)<br />

We choose the parametrizati<strong>on</strong> τ to satisfy ˙z 2 = 1.<br />

By solv<strong>in</strong>g the Heisenberg equati<strong>on</strong> for ϕ, we get the<br />

stochastic ALD equati<strong>on</strong> for the charged particle:<br />

m ˙v µ − F µ − e2<br />

12π (vµ ˙v 2 + ¨v µ ) = −e −→ ω µ ϕh(z) (3)<br />

where v µ = ˙z µ . The dissipative term corresp<strong>on</strong>ds to loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy through the radiati<strong>on</strong> and it is called the radiati<strong>on</strong><br />

damp<strong>in</strong>g term. On the other hand, the noise term comes<br />

from the Unruh effect, namely, <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniformly<br />

accelerated particle with the thermal bath <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong><br />

field.<br />

We can easily solve the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> small fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transverse velocities v i = v i 0+δv i <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the field ϕh (or its Fourier tranformed<br />

field φ) as<br />

where<br />

δ˜v i (ω) = eh(ω)∂iφ(ω), (4)<br />

δv i ∫<br />

dω<br />

(τ) =<br />

2π δ˜vi (ω)e −iωτ ,<br />

∫<br />

dω<br />

−iωτ<br />

∂iϕh(τ) = ∂iφ(ω)e<br />

2π<br />

(5)<br />

(6)<br />

h(ω) =<br />

1<br />

. (7)<br />

−imω + e2<br />

12π (ω2 + a 2 )<br />

In the follow<strong>in</strong>g, as an ideal case we c<strong>on</strong>sider a uniformly<br />

accelerated charged particle <strong>in</strong> the scalar QED, and <strong>in</strong>vestigate<br />

the radiati<strong>on</strong> from such a particle. The ma<strong>in</strong> issue is<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terference.<br />

RADIATION AND INTERFERENCE<br />

Now we calculate the radiati<strong>on</strong> emanated from the uniformly<br />

accelerated charged particle. First let’s c<strong>on</strong>sider the<br />

2-po<strong>in</strong>t functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> field. S<strong>in</strong>ce the field is<br />

written as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum fluctuati<strong>on</strong> (a homogeneous<br />

soluti<strong>on</strong>) ϕh and the <strong>in</strong>homogeneous soluti<strong>on</strong> <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged particle ϕI, the 2-po<strong>in</strong>t functi<strong>on</strong> is<br />

given by<br />

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕh(x)ϕh(y)⟩ (8)<br />

= ⟨ϕI(x)ϕh(y)⟩ + ⟨ϕh(x)ϕI(y)⟩ + ⟨ϕI(x)ϕI(y)⟩.<br />

The Unruh radiati<strong>on</strong> estimated <strong>in</strong> [3] is c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong><br />

⟨ϕIϕI⟩, which <strong>in</strong>clude the Larmor radiati<strong>on</strong>. We need special<br />

care <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>terference terms. As discussed <strong>in</strong> [5],

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!