03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Zero temperature case<br />

There are still left the divergences <strong>in</strong> the LM parameters<br />

at T = 0, but they cancel each other to give a f<strong>in</strong>ite χM. F<strong>in</strong>ally<br />

magnetic susceptibility is given as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the bare <strong>in</strong>teracti<strong>on</strong> and the static screen<strong>in</strong>g<br />

effect,<br />

(χM/χPauli) −1<br />

0 = 1 − Cf g 2 µ<br />

12π 2 E 2 F kF<br />

− 1<br />

2 (E2 F + 4mEF − 2m 2 )κ ln 2<br />

κ<br />

[<br />

m(2EF + m) −<br />

]<br />

, (2)<br />

with κ = m2 D /2k2 F <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Debye mass, m2D ≡<br />

g2 µkF /2π2 2<br />

Nc , and Cf = −1<br />

. Thus the screen<strong>in</strong>g effect<br />

2Nc<br />

gives the g4 ln g2 term.<br />

To dem<strong>on</strong>strate the screen<strong>in</strong>g effect, we show <strong>in</strong> Fig. 4.3<br />

the magnetic susceptibility. We assume a flavor-symmetric<br />

quark matter, ρu = ρd = ρs = ρB/3, and take the QCD<br />

coupl<strong>in</strong>g c<strong>on</strong>stant as αs ≡ g2 /4π = 2.2 and the strange<br />

quark mass ms = 300MeV <strong>in</strong>ferred from the MIT bag<br />

model. Note that the screen<strong>in</strong>g effect is qualitatively dif-<br />

χ M /χ Pauli<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

α S=2.2<br />

ms=300MeV<br />

mu=md=0<br />

0 0.5 1 1.5 2<br />

kF [1/fm]<br />

Figure 1: Magnetic susceptibility at T = 0. Screen<strong>in</strong>g<br />

effects are shown <strong>in</strong> comparis<strong>on</strong> with the simple OGE<br />

case: the solid curve shows the result with the simple OGE<br />

without screen<strong>in</strong>g, while the dashed and dash-dotted <strong>on</strong>es<br />

shows the screen<strong>in</strong>g effect with Nf = 1 (<strong>on</strong>ly s quark)and<br />

Nf = 2 + 1 (u, d, s quarks), respectively.<br />

ferent, depend<strong>in</strong>g <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> flavor Nf . The Debye<br />

mass is given by all the flavors,<br />

m 2 D = ∑<br />

flavors<br />

g 2<br />

2π 2 kF,f EF,f , (3)<br />

so that the κ ln(2/κ) term changes its sign for κ =<br />

m2 D /2k2 F > 2. Thus we can see the screen<strong>in</strong>g flavors sp<strong>on</strong>taneous<br />

magnetizati<strong>on</strong> <strong>in</strong> large Nf .<br />

N<strong>on</strong>-Fermi-liquid effect at f<strong>in</strong>ite temperature<br />

We c<strong>on</strong>sider the low temperature case, T/µ ≪ 1, but<br />

usual low-temperature expansi<strong>on</strong> can not be applied, s<strong>in</strong>ce<br />

the quasiparticles exhibits an anomalous behavior near the<br />

Fermi surface. S<strong>in</strong>ce the l<strong>on</strong>gitud<strong>in</strong>al glu<strong>on</strong>s are short<br />

ranged due to the Debye screen<strong>in</strong>g, their c<strong>on</strong>tributi<strong>on</strong>s are<br />

almost temperature <strong>in</strong>dependent. Thus the ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong><br />

to the temperature dependence comes from the transverse<br />

glu<strong>on</strong>s. Careful c<strong>on</strong>siderati<strong>on</strong>s about the quasiparticle<br />

energy show that quark matter behaves like marg<strong>in</strong>al<br />

Fermi liquid, where the Fermi velocity and the renormalizati<strong>on</strong><br />

factor vanish at the Fermi surface [9]. Such behavior<br />

is brought about by the transverse glu<strong>on</strong>s. The magnetic<br />

susceptibility is then given as<br />

(χM /χPauli) −1 = (χM /χPauli) −1<br />

0<br />

+ π2<br />

6k 4 F<br />

(<br />

2E 2 F − m 2 + m4<br />

E 2 F<br />

)<br />

T 2<br />

( )<br />

Λ<br />

T<br />

+ Cf g2uF (2k<br />

72<br />

4 F + k2 F m2 + m4 )<br />

k4 F E2 T<br />

F<br />

2 ln<br />

+ O(g 2 T 2 ). (4)<br />

with uF ≡ vF /EF , where we can see the T 2 ln T term appears<br />

as a novel n<strong>on</strong>-Fermi-liquid effect, besides the usual<br />

T 2 term, It should be <strong>in</strong>terest<strong>in</strong>g to compare this term with<br />

other <strong>on</strong>es <strong>in</strong> specific heat or the superc<strong>on</strong>duct<strong>in</strong>g gap energy.<br />

Furthermore, such logarithmic behavior also resembles<br />

the <strong>on</strong>e by the sp<strong>in</strong> fluctuati<strong>on</strong>s or paramagn<strong>on</strong>s. F<strong>in</strong>ally<br />

the phase diagram is presented <strong>in</strong> Fig. 2, where we<br />

can also asses the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-Fermi-liquid effect.<br />

T [MeV]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Full.<br />

w/o dynamical scr.<br />

w/o static scr.<br />

w/o any scr.<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

kF [1/fm]<br />

Figure 2: Magnetic phase diagram <strong>in</strong> the densitytemperature<br />

plane. The open (filled) circle <strong>in</strong>dicates the<br />

Curie temperature at kF = 1.1(1.6) fm −1 while the<br />

squares show those without the T 2 ln T term.<br />

F<strong>in</strong>ally we present a phase diagram <strong>in</strong> Fig. 2, where we<br />

can estimate the Curie temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> several tens <str<strong>on</strong>g>of</str<strong>on</strong>g> MeV.<br />

We can also see how the n<strong>on</strong>-Fermi-liquid effect works for<br />

the ferromagnetic transiti<strong>on</strong>.<br />

MAGNETISM AND CHIRAL SYMMETRY<br />

Recently there have been appeared many studies about<br />

the n<strong>on</strong>-uniform states <strong>in</strong> QCD, stimulated by the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the studies about the exact soluti<strong>on</strong>s <strong>in</strong> 1+1 dimensi<strong>on</strong>al<br />

models [10]. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-uniform

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!