03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON THE UNRUH EFFECT ∗<br />

Ralf Schützhold † , Fakultät für Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany<br />

Abstract<br />

After a brief <strong>in</strong>troducti<strong>on</strong> <strong>in</strong>to the Unruh effect and its<br />

generalizati<strong>on</strong> to n<strong>on</strong>-uniform (here circular) accelerati<strong>on</strong>,<br />

we discuss prospects for measur<strong>in</strong>g signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> this effect<br />

<strong>in</strong> str<strong>on</strong>g lasers.<br />

INTRODUCTION<br />

The Unruh effect [1] describes the strik<strong>in</strong>g discovery<br />

that an accelerated observer/detector experiences the<br />

M<strong>in</strong>kowski vacuum as a thermal bath – imply<strong>in</strong>g that<br />

the particle c<strong>on</strong>cept depends <strong>on</strong> the <strong>in</strong>ertial state <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

observer/detector. After important preparatory works by<br />

Full<strong>in</strong>g [2] and Davies [3], Unruh [1] realized this phenomen<strong>on</strong><br />

while try<strong>in</strong>g to understand how black holes can<br />

evaporate by emitt<strong>in</strong>g Hawk<strong>in</strong>g radiati<strong>on</strong> [4]. Around the<br />

same time, the mathematical foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this strik<strong>in</strong>g fact<br />

was established by Bisognano & Wichmann [5] by show<strong>in</strong>g<br />

the relati<strong>on</strong> between the R<strong>in</strong>dler Hamilt<strong>on</strong>ian and thermality<br />

– but apparently without immediately realiz<strong>in</strong>g the<br />

broad physical significance.<br />

However, so far this predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory<br />

has eluded a direct experimental verificati<strong>on</strong>, see also [6].<br />

There are some observati<strong>on</strong>s regard<strong>in</strong>g the imperfect polarizability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s <strong>in</strong> storage r<strong>in</strong>gs which are related to<br />

the Sokolov-Ternov effect [7] and can be <strong>in</strong>terpreted as an<br />

<strong>in</strong>direct verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh effect generalized to the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> circular accelerati<strong>on</strong>, see, e.g., [8, 9].<br />

In the follow<strong>in</strong>g, we briefly discuss a recent proposal<br />

[10, 11] for directly observ<strong>in</strong>g signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the Unruh<br />

effect <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> pairs created by electr<strong>on</strong>s<br />

which are accelerated <strong>in</strong> an ultra-str<strong>on</strong>g laser field, see also<br />

[12, 13]. We start with a short <strong>in</strong>troducti<strong>on</strong> <strong>in</strong>to the Unruh<br />

effect for uniform accelerati<strong>on</strong> and discuss the generalizati<strong>on</strong><br />

to circular accelerati<strong>on</strong>, which is relevant for electr<strong>on</strong>s<br />

<strong>in</strong> storage r<strong>in</strong>gs and the Sokolov-Ternov effect.<br />

DETECTOR PLUS FIELD<br />

Let us c<strong>on</strong>sider the follow<strong>in</strong>g acti<strong>on</strong> for the field ϕ and<br />

the detector with excitati<strong>on</strong> energy E, coupled with the<br />

coupl<strong>in</strong>g strength g (we use = c = 1)<br />

A = Adetector + Afield<br />

∫ [<br />

E<br />

= dτ<br />

2 σz<br />

]<br />

+ gσxϕ (x[τ])<br />

+ 1<br />

∫<br />

2<br />

d 4 x [(∂µϕ)(∂ µ ϕ)] , (1)<br />

∗ Work supported by DFG under grant SCHU 1557/1.<br />

† ralf.schuetzhold@uni-due.de<br />

where σz and σx are the Pauli matrices and τ is the proper<br />

time al<strong>on</strong>g the detector trajectory. In the <strong>in</strong>teracti<strong>on</strong> picture,<br />

the transiti<strong>on</strong> Hamilt<strong>on</strong>ian reads (with 2σ± = σx ± iσy)<br />

]<br />

ˆϕ (x[τ]) , (2)<br />

ˆH<strong>in</strong>t(τ) = g(τ) [ e iEτ σ+ + e −iEτ σ−<br />

where g(τ) is smooth switch<strong>in</strong>g (<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g>f) functi<strong>on</strong>. Initially<br />

(where the <strong>in</strong>teracti<strong>on</strong> is switched <str<strong>on</strong>g>of</str<strong>on</strong>g>f) both, detector<br />

and field, are <strong>in</strong> their ground state<br />

|Ψ<strong>in</strong>⟩ = |Ψ(τ ↓ −∞)⟩<br />

= |Ψdetector⟩ ⊗ |Ψfield⟩ = |↓⟩ ⊗ |0⟩ . (3)<br />

Assum<strong>in</strong>g small coupl<strong>in</strong>g g, we may derive the f<strong>in</strong>al state<br />

via perturbati<strong>on</strong> theory<br />

|Ψout⟩ = |Ψ(τ ↑ +∞)⟩<br />

∫<br />

= |Ψ<strong>in</strong>⟩ − i<br />

dτ ˆ H<strong>in</strong>t(τ) |Ψ<strong>in</strong>⟩ + O(g 2 ) .(4)<br />

This yields the excitati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector<br />

P↑ = ⟨Ψout| ↑⟩ ⟨↑ |Ψout⟩<br />

=<br />

∫ ∫<br />

dτ dτ ′ g(τ) g(τ ′ ) e iE(τ−τ ′ )<br />

×<br />

× ⟨0| ˆ ϕ (x[τ]) ˆ ϕ (x[τ ′ ]) |0⟩ . (5)<br />

For simplicity, we c<strong>on</strong>sider the Wightmann functi<strong>on</strong> for a<br />

massless scalar field <strong>in</strong> 3+1 dimensi<strong>on</strong>s<br />

⟨0| ˆ ϕ (x) ˆ ϕ (x ′ ) |0⟩ = − 1<br />

(2π) 2<br />

1<br />

(t − t ′ ) 2 − (r − r ′ , (6)<br />

) 2<br />

where the pole structure (at the light-c<strong>on</strong>e) is understood <strong>in</strong><br />

such a way that the Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wightmann<br />

functi<strong>on</strong> <strong>on</strong>ly c<strong>on</strong>ta<strong>in</strong>s n<strong>on</strong>-negative energies. Roughly<br />

speak<strong>in</strong>g, (t − t ′ ) 2 is replaced by (t − t ′ − iε) 2 with ε ↓ 0.<br />

UNIFORM ACCELERATION<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> (eternal) uniform accelerati<strong>on</strong> a, the detector<br />

trajectory <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper time τ reads<br />

t[τ] = 1<br />

a<br />

s<strong>in</strong>h(aτ) , x[τ] = 1<br />

a<br />

cosh(aτ) , y = z = 0 . (7)<br />

Evaluat<strong>in</strong>g the two-po<strong>in</strong>t functi<strong>on</strong> al<strong>on</strong>g this trajectory<br />

⟨0| ˆ ϕ (x[τ]) ˆ ϕ (x[τ ′ ]) |0⟩ = − 1<br />

2(2π) 2<br />

a2 cosh(a[τ − τ ′ , (8)<br />

]) − 1<br />

we f<strong>in</strong>d a stati<strong>on</strong>ary expressi<strong>on</strong> which is periodic al<strong>on</strong>g the<br />

imag<strong>in</strong>ary τ− = τ − τ ′ -axis and possesses double poles at<br />

this axis<br />

a[τ − τ ′ ] ∈ 2πi N . (9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!