03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

QED IN ULTRA-INTENSE LASER FIELDS ∗<br />

T. He<strong>in</strong>zl † , School <str<strong>on</strong>g>of</str<strong>on</strong>g> Comput<strong>in</strong>g & Mathematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Plymouth, UK<br />

C. Harvey, A. Ildert<strong>on</strong> and M. Marklund, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>, Ume˚a University, Sweden<br />

Abstract<br />

We present an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> basic QED processes <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultra-<strong>in</strong>tense laser background.<br />

INTRODUCTION<br />

The year 2010 has seen the 50th anniversary <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser.<br />

S<strong>in</strong>ce its <strong>in</strong>cepti<strong>on</strong> it has underg<strong>on</strong>e a very dynamic development<br />

culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday applicati<strong>on</strong>s.<br />

From the physics po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view specificati<strong>on</strong> parameters<br />

have evolved <strong>in</strong> many directi<strong>on</strong>s, for <strong>in</strong>stance towards<br />

the X-ray regime <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency. For the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>ference<br />

and this talk we are particularly <strong>in</strong>terested <strong>in</strong> ultrahigh<br />

<strong>in</strong>tensities. The historical development <str<strong>on</strong>g>of</str<strong>on</strong>g> these is pictured<br />

<strong>in</strong> Fig. 1 (adapted from [1]) with a notable breakthrough<br />

<strong>in</strong> 1985 due to the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chirped pulse<br />

amplificati<strong>on</strong> (CPA) [2].<br />

Figure 1: Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser <strong>in</strong>tensity.<br />

The vertical axis <strong>on</strong> the right-hand side measures <strong>in</strong>tensity<br />

I <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong>less laser amplitude<br />

a0 = eEλ<br />

mc 2 ∼ I1/2 , (1)<br />

which is the energy ga<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> (charge e, mass m)<br />

across a laser wavelength λ <strong>in</strong> the r.m.s. field E, <strong>in</strong> units<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its rest energy, mc 2 . Hence, when a0 exceeds unity an<br />

∗ Work supported <strong>in</strong> part by ERC, C<strong>on</strong>tract No. 204059-QPQV.<br />

† the<strong>in</strong>zl@plymouth.ac.uk<br />

electr<strong>on</strong> prob<strong>in</strong>g the laser field will beg<strong>in</strong> to move relativistically.<br />

It is worth po<strong>in</strong>t<strong>in</strong>g out that ultra-<strong>in</strong>tense lasers produce<br />

the largest electromagnetic fields that are currently available<br />

<strong>in</strong> the lab. Of course, the downside is that the fields<br />

are pulsed (i.e. “short-lived”) and alternat<strong>in</strong>g. An overview<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the current magnitudes is given <strong>in</strong> Table 1.<br />

Table 1: Some typical current magnitudes.<br />

Quantity Magnitude<br />

Power P 10 15 W ≡ 1 PW<br />

Intensity I 10 15 W/cm 2<br />

Electric Field E 10 14 V/m<br />

Magnetic Field B 10 10 G<br />

Planned facilities where these magnitudes will be <strong>in</strong>creased<br />

further <strong>in</strong>clude the Vulcan 10 PW project at the<br />

Central Laser Facility <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutherford Lab, UK and the European<br />

Extreme Light Infrastructure where up to 100 PW<br />

are envisaged.<br />

STRONG FIELDS: THEORY<br />

We are <strong>in</strong>terested <strong>in</strong> elementary processes occurr<strong>in</strong>g <strong>in</strong><br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an ultra-<strong>in</strong>tense laser. The appropriate theory<br />

is (a variant <str<strong>on</strong>g>of</str<strong>on</strong>g>) str<strong>on</strong>g-field quantum electrodynamics<br />

(QED) with the laser field be<strong>in</strong>g <strong>in</strong>cluded as an external<br />

background field. The extent to which this theory is under<br />

analytical c<strong>on</strong>trol depends sensitively <strong>on</strong> the model chosen<br />

for the laser beam. The simplest model is an <strong>in</strong>f<strong>in</strong>ite,<br />

m<strong>on</strong>ochromatic plane wave for which transiti<strong>on</strong> amplitudes<br />

can be calculated <strong>in</strong>clud<strong>in</strong>g an analytic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

appear<strong>in</strong>g oscillatory <strong>in</strong>tegrals [5]. The latter becomes difficult<br />

for pulsed plane waves such that this case presents<br />

more challeng<strong>in</strong>g technical difficulties. While pulsed plane<br />

waves have f<strong>in</strong>ite extent <strong>in</strong> time and l<strong>on</strong>gitud<strong>in</strong>al distance<br />

they are still <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>f<strong>in</strong>ite transverse size. Introduc<strong>in</strong>g a transverse<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile such as for a Gaussian beam certa<strong>in</strong>ly represents<br />

a more realistic model but turns out to be difficult to<br />

implement <strong>in</strong> str<strong>on</strong>g-field QED, the ma<strong>in</strong> reas<strong>on</strong> be<strong>in</strong>g the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> too many c<strong>on</strong>servati<strong>on</strong> laws al<strong>on</strong>g with translati<strong>on</strong>al<br />

<strong>in</strong>variance. So, for the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this talk we will exclusively<br />

be deal<strong>in</strong>g with (<strong>in</strong>f<strong>in</strong>ite or pulsed) plane waves.<br />

From a relativistic field theory po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view, which we<br />

have to adopt for a0 > 1, plane electromagnetic waves are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a quite peculiar nature. They are described by a wave<br />

4-vector k that is lightlike or null, i.e. k 2 = 0. The electromagnetic<br />

field strength, F = (E, B), <strong>on</strong>ly depends <strong>on</strong> the<br />

<strong>in</strong>variant phase, k·x = ωt/c−k·x, where ω is the laser fre-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!