03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

states <strong>in</strong> quark matter have been studied <strong>in</strong> relati<strong>on</strong> to chiral<br />

transiti<strong>on</strong> [11]. The appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> density waves or<br />

crystall<strong>in</strong>e structures has been an <strong>in</strong>terest<strong>in</strong>g possibility at<br />

moderate densities. Note that the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>uniform<br />

phase is not special, but rather familiar <strong>in</strong> c<strong>on</strong>densed<br />

matter physics. In some cases it may exhibit an <strong>in</strong>terest<strong>in</strong>g<br />

magnetic property; the sp<strong>in</strong> density wave (SDW)<br />

discussed by Overhauser is a typical example. In the previ-<br />

ψψ<br />

1<br />

0<br />

-1<br />

0<br />

Z<br />

-1<br />

0<br />

1<br />

ψiγ5τ3ψ<br />

Figure 3: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW, where pseudoscalar density as<br />

well as scalar density oscillates al<strong>on</strong>g z directi<strong>on</strong>.<br />

ous paper [2] we have discussed the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a density<br />

wave, where pseudoscalar density as well as scalar density<br />

oscillate <strong>in</strong> harm<strong>on</strong>y al<strong>on</strong>g <strong>on</strong>e directi<strong>on</strong>, which is called<br />

dual chiral density wave (DCDW).<br />

⟨ ¯ ψψ⟩ = ∆ cos(θ(r)),<br />

⟨ ¯ ψiγ5τ3ψ⟩ = ∆ s<strong>in</strong>(θ(r)). (5)<br />

The chiral angle θ(r) is taken <strong>in</strong> the <strong>on</strong>e dimensi<strong>on</strong>al form,<br />

θ(r) = q · r. The amplitude ∆ generates the dynamical<br />

mass M, M = −2G∆, while θ produces the axial-vector<br />

field for quarks, τ3γ5γ · ∇θ/2 = τ3γ5γ · q/2. The s<strong>in</strong>gleparticle<br />

(positive) energy is then given by<br />

E ± p = [E 2 p + q 2 /4 ± q √ p 2 z + M 2 ] 1/2 , (6)<br />

with Ep = √ p 2 + M 2 , depend<strong>in</strong>g <strong>on</strong> the sp<strong>in</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom. Accord<strong>in</strong>gly the Fermi sea is split <strong>in</strong>to two deformed<br />

<strong>on</strong>es: <strong>on</strong>e is deformed <strong>in</strong> the prolate shape and the<br />

other <strong>in</strong> the oblate shape.<br />

DCDW enjoys many <strong>in</strong>terest<strong>in</strong>g features. First, the symmetry<br />

break<strong>in</strong>g pattern is Tˆp × U Q 3 5 (1) → U ˆp+Q 3 5 , which<br />

may be 1+1 dimensi<strong>on</strong>al analog <str<strong>on</strong>g>of</str<strong>on</strong>g> Skyrmi<strong>on</strong>. Then the<br />

Nambu-Goldst<strong>on</strong>e bos<strong>on</strong> (”phas<strong>on</strong>”) has a hybrid nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

”pi<strong>on</strong>” and ”ph<strong>on</strong><strong>on</strong>”. Sec<strong>on</strong>dly, a direct evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

magnetizati<strong>on</strong> gives ⟨σ12⟩ ∝ cos(q · r), which means a<br />

k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> SDW. In this case quark matter can be regarded as<br />

a k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid crystal endowed with two-dimensi<strong>on</strong>al ferromagnetic<br />

order and <strong>on</strong>e dimensi<strong>on</strong>al anti-ferromagnetic<br />

order. Note that magnetic field is globally vanished <strong>in</strong> this<br />

phase, but locally very str<strong>on</strong>g.<br />

”Nest<strong>in</strong>g” mechanism<br />

Here we discuss the mechanism for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DCDW. There seems to be some c<strong>on</strong>fusi<strong>on</strong>s about it. In<br />

the references [12] authors emphasized the nest<strong>in</strong>g effect<br />

(or Overhauser effect) for the essential mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-q/2<br />

q/2+M<br />

q/2<br />

q/2-M<br />

q/2<br />

-0.5<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

pz<br />

E+(pz)<br />

E-(pz)<br />

Figure 4: Energy spectra for p⊥ = 0 for q/2 > M. Solid<br />

(magenta) curves show the <strong>on</strong>e for massive quarks, while<br />

dashed (blue) curves for massless <strong>on</strong>es, |pz ± q/2|.<br />

density waves, but there is little discussi<strong>on</strong> about DCDW or<br />

other <strong>in</strong>homogeneous phases. For 1+1 dimensi<strong>on</strong>al case,<br />

we can immediately see that q is given as q = 2µ for given<br />

chemical potential µ [10]. This is simply because the energy<br />

spectrum (6) is reduced to E ± <br />

<br />

p → √ p2 z + M 2 <br />

<br />

± q/2<br />

and q is decoupled from pz. Recall that the outstand<strong>in</strong>g relati<strong>on</strong><br />

q = 2pF is held <strong>in</strong> the usual density wave like CDW<br />

or SDW <strong>in</strong> the <strong>on</strong>e dimensi<strong>on</strong>al system, due to the nest<strong>in</strong>g<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fermi surface. We can see that the similar<br />

mechanism works <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW, but <strong>in</strong> somewhat<br />

different manner from the usual <strong>on</strong>e. For the case,<br />

M > q/2, E ± p are <strong>on</strong>ly shifted ±q/2 from the free particle<br />

energy, so that formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DCDW depends <strong>on</strong> the <strong>in</strong>teracti<strong>on</strong><br />

strength like <strong>in</strong> the St<strong>on</strong>er model. However, numerical<br />

calculati<strong>on</strong> shows this is not the case: q/2 > M is always<br />

held <strong>in</strong> the DCDW phase. In Fig. 4 we sketch the energy<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<strong>in</strong>gle quark energy for the case, q/2 > M.<br />

Note that mass is generated by the <strong>in</strong>teracti<strong>on</strong> with DCDW<br />

<strong>in</strong> this case. So E ± p can be regarded as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

switch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong> with DCDW between massless<br />

quarks with relative momentum q. For massless quarks, the<br />

two levels cross each other at pz = 0 for any q. Once the<br />

<strong>in</strong>teracti<strong>on</strong> with DCDW is present, mass is generated and<br />

two levels avoid the cross<strong>in</strong>g with the energy gap, 2M, at<br />

pz = 0 (magenta curves <strong>in</strong> Fig. 4). So if we choose q = 2µ<br />

and fill the levels up to pF = µ, there is always the energy<br />

ga<strong>in</strong> due to the <strong>in</strong>teracti<strong>on</strong> with DCDW. In the three dimensi<strong>on</strong>al<br />

case, the simple relati<strong>on</strong> is no more held, but we can<br />

expect some rem<strong>in</strong>iscence. Actually we can numerically<br />

check that the similar relati<strong>on</strong> is held <strong>in</strong> the three dimensi<strong>on</strong>al<br />

case. In the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the critical end po<strong>in</strong>t we have<br />

seen that the chiral correlati<strong>on</strong> functi<strong>on</strong> χ(q) diverges at f<strong>in</strong>ite<br />

q <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∼ 2pF , but the effective mass is almost vanished<br />

<strong>in</strong> this situati<strong>on</strong>.<br />

Thus we can understand DCDW with q/2 > M <strong>in</strong><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the ”nest<strong>in</strong>g” effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the FErmi surface, while<br />

q smoothly <strong>in</strong>creases from zero for RKC. Their situati<strong>on</strong> is<br />

very different from our case: the opposite relati<strong>on</strong>, |q/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!