03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

c<strong>on</strong>ductor. The current is given by [6]<br />

√<br />

J = σ2 0 + d2 /(e2 + 1) E, (4)<br />

where d is related to the quark-charge density ρ through<br />

d = ρ/( π<br />

√<br />

2<br />

2 λT ). Ow<strong>in</strong>g to the doped charges, any small<br />

E causes a current and we observe Ohm’s law <strong>in</strong> the small-<br />

J regi<strong>on</strong>. If we raise J, we may aga<strong>in</strong> observe NDR ow<strong>in</strong>g<br />

to the n<strong>on</strong>trivial behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> σ0. It is <strong>in</strong>deed the case if d<br />

is small enough not to smear the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ0. In this<br />

case, the curve <strong>in</strong> Fig. 3 will be “N-shaped”, (S-shaped <strong>in</strong><br />

the sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1) start<strong>in</strong>g at the orig<strong>in</strong>. The po<strong>in</strong>t is that<br />

the d-dependent term <strong>in</strong> the square root <strong>in</strong> (4) does not have<br />

any structure to produce NDR. Therefore, the σ0-part <strong>in</strong> (4)<br />

is crucial for NDR. It is understood that the current due to<br />

the σ0-part is caused by the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers.<br />

The reas<strong>on</strong>s are as follows: it c<strong>on</strong>tributes the current<br />

with the total system be<strong>in</strong>g kept neutral, and it vanishes if<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers mq is <strong>in</strong>f<strong>in</strong>ite. [6] 6 As a c<strong>on</strong>clusi<strong>on</strong>,<br />

the pair-creati<strong>on</strong> process is essential for our NDR.<br />

DISCUSSION<br />

We can suggest a phenomenological model <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR. The<br />

phenomenological orig<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR are classified <strong>in</strong>to three<br />

types (except for the tunnel effect for some semic<strong>on</strong>ductor<br />

juncti<strong>on</strong>s) <strong>in</strong> Ref. [2]: 1) n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> mobility, 2)<br />

n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> carrier density, and 3) n<strong>on</strong>l<strong>in</strong>earity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> temperature. 7 We have found that our NDR orig<strong>in</strong>ates<br />

<strong>in</strong> the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers but not <strong>in</strong><br />

the normal current <str<strong>on</strong>g>of</str<strong>on</strong>g> the doped charges. This means that<br />

the above feature 2) is crucial <strong>in</strong> our NDR. Although further<br />

study is necessary to reach the f<strong>in</strong>al c<strong>on</strong>clusi<strong>on</strong>, it is<br />

natural to assume that both the normal current and the paircreated<br />

current c<strong>on</strong>tribute 1) and 3) regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the charge carriers. If this assumpti<strong>on</strong> is right, 1) and 3)<br />

do not seem to be important <strong>in</strong> our NDR. The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our NDR is <strong>in</strong> the category <str<strong>on</strong>g>of</str<strong>on</strong>g> the “SNDC” <strong>in</strong> Ref. [2] and<br />

it may be attributed to the impact i<strong>on</strong>izati<strong>on</strong> expla<strong>in</strong>ed <strong>in</strong><br />

Ref. [2]. The proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> the many-body avalanche model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NDR[17, 18] also matches our picture. It is important<br />

to study further the c<strong>on</strong>necti<strong>on</strong> between our results and the<br />

phenomenological models <str<strong>on</strong>g>of</str<strong>on</strong>g> NDR.<br />

We can also see our results from the viewpo<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quark-hadr<strong>on</strong> physics and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the excit<strong>on</strong>ic <strong>in</strong>sulators.<br />

Let us c<strong>on</strong>sider the sQGP state [11] where the quarkantiquark<br />

bound state exists <strong>in</strong> the dec<strong>on</strong>f<strong>in</strong>ement phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glu<strong>on</strong>s. Our results suggest that the quarks are liberated<br />

at the critical value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field and their current<br />

may show NDR. We may also have a chance to observe a<br />

qualitatively similar NDR <strong>in</strong> excit<strong>on</strong>ic <strong>in</strong>sulators after the<br />

<strong>in</strong>sulati<strong>on</strong> break<strong>in</strong>g. It is important to study how general<br />

this NDR is, <strong>in</strong> quark/mes<strong>on</strong> systems and <strong>in</strong> the systems <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

6 We also po<strong>in</strong>t out that σ0 is proporti<strong>on</strong>al to NcNf . This suggests<br />

that it may be a <strong>on</strong>e-loop c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks, as <strong>in</strong> the perturbative<br />

computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pair-creati<strong>on</strong> rate. Note that the quark loops have been<br />

taken <strong>in</strong>to account to the 1-loop order <strong>in</strong> the probe approximati<strong>on</strong>.<br />

7 See also Ref. [16].<br />

charge-anticharge bound states, <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g<br />

external fields.<br />

We expect that the present system is a good theoretical<br />

playground for studies <strong>on</strong> n<strong>on</strong>l<strong>in</strong>ear charge transport<br />

and n<strong>on</strong>equilibrium steady states. The AdS/CFT corresp<strong>on</strong>dence<br />

can be a new tool for study<strong>in</strong>g n<strong>on</strong>equilibrium<br />

physics as we have dem<strong>on</strong>strated here.<br />

The author thanks the organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> PIF2010 c<strong>on</strong>ference.<br />

Discussi<strong>on</strong>s with the participants <str<strong>on</strong>g>of</str<strong>on</strong>g> various research areas<br />

such as plasma physics, str<strong>on</strong>g-field dynamics and laser<br />

physics are quite fruitful <strong>in</strong> plann<strong>in</strong>g further studies al<strong>on</strong>g<br />

the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work.<br />

REFERENCES<br />

[1] S. Nakamura, Prog. Theor. Phys. 124 (2010), 1105.<br />

[2] E. Schöll, N<strong>on</strong>l<strong>in</strong>ear Spatio-Temporal Dynamics and Chaos<br />

<strong>in</strong> Semic<strong>on</strong>ductors (Cambridge University Press, Cambridge<br />

2001).<br />

[3] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1988), 231<br />

[Int. J. Theor. Phys. 38 (1999), 1113].<br />

[4] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett.<br />

B 428 (1998), 105.<br />

[5] E. Witten, Adv. Theor. Math. Phys. 2 (1998), 253.<br />

[6] A. Karch and A. O’Bann<strong>on</strong>, J. High Energy Phys. 0709<br />

(2007), 024.<br />

[7] J. Erdmenger, R. Meyer and J. P. Shock, J. High Energy<br />

Phys. 0712 (2007), 091.<br />

[8] T. Albash, V. G. Filev, C. V. Johns<strong>on</strong> and A. Kundu, J. High<br />

Energy Phys. 0808 (2008), 092.<br />

[9] N. F. Mott, Philos. Mag. 6 (1961), 287.<br />

[10] See also for a review, S. A. Moskalenko and D. W. Snoke,<br />

Bose-E<strong>in</strong>ste<strong>in</strong> C<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Excit<strong>on</strong>s and Biexcit<strong>on</strong>s<br />

(Cambridge Univ. Press, Cambridge 2000).<br />

[11] M. Gyulassy and L. McLerran, Nucl. Phys. A 750 (2005),<br />

30.<br />

[12] A. Karch, A. O’Bann<strong>on</strong> and E. Thomps<strong>on</strong>, J. High Energy<br />

Phys. 0904 (2009), 021.<br />

[13] A. Karch and E. Katz, J. High Energy Phys. 0206 (2002),<br />

043.<br />

[14] S. Nakamura, Y. Seo, S. J. S<strong>in</strong> and K. P. Yogendran, J. Korean<br />

Phys. Soc. 52 (2008), 1734.<br />

[15] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers and<br />

R. M. Thoms<strong>on</strong>, J. High Energy Phys. 0702 (2007), 016.<br />

[16] H. C. Law and K. C. Kao, IEEE Trans. Electr<strong>on</strong> Devices 17<br />

(1970), 562.<br />

[17] Y. Tokura, H. Okamoto, T. Takao, T. Tadaoki and G. Saito,<br />

Phys. Rev. B 38 (1988), 2215.<br />

[18] T. Oka, H. Kishida and H. Aoki, talk given at JPS 2010 Annual<br />

Meet<strong>in</strong>g, March 20th (2010).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!