03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

sometimes exceed the Edd<strong>in</strong>gt<strong>on</strong> lum<strong>in</strong>osity (a maximum<br />

permitted lum<strong>in</strong>osity), and this excess is c<strong>on</strong>sidered to orig<strong>in</strong>ate<br />

from a suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Thoms<strong>on</strong> cross secti<strong>on</strong> <strong>in</strong><br />

the high magnetic field. Thirdly, there is marg<strong>in</strong>al evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong> cyclotr<strong>on</strong>s <strong>in</strong> the magnetar X-ray spectra, which<br />

suggests B ∼ 10 15 G [9].<br />

X-RAY EMISSION OF MAGNETARS<br />

Persistent X-ray emissi<strong>on</strong> from magnetars have been extensively<br />

observed <strong>in</strong> the ∼0.2–10 keV. In this energy band,<br />

a thermal emissi<strong>on</strong> with its temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> kT ∼ 0.5 keV is<br />

c<strong>on</strong>sidered to be emitted from the stellar surface. However,<br />

through a new hard X-ray imag<strong>in</strong>g with the INTEGRAL<br />

satellite, some persistently bright magnetars were discovered<br />

to emit a dist<strong>in</strong>ct hard-tail comp<strong>on</strong>ent which emerges<br />

above ∼10 keV with an extremely hard phot<strong>on</strong> <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Γh ∼ 1 [10]. This unusual new comp<strong>on</strong>ent, though not yet<br />

observed from all magnetars, is expected to provide a h<strong>in</strong>t<br />

to the high field physics <strong>in</strong> magnetars.<br />

Us<strong>in</strong>g the Suzaku X-ray satellite [11], we performed<br />

broad-band (0.8–70 keV) spectral analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the persistent<br />

X-ray emissi<strong>on</strong> from 9 magnetars [12]. As shown <strong>in</strong><br />

Figure 5, the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t thermal comp<strong>on</strong>ent was detected from all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them (green l<strong>in</strong>es), while the hard-tail comp<strong>on</strong>ent, dom<strong>in</strong>at<strong>in</strong>g<br />

above ∼10 keV, was detected at ∼1 mCrab 2 <strong>in</strong>tensity<br />

from 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> them (red l<strong>in</strong>es). In additi<strong>on</strong>, as shown <strong>in</strong> this<br />

figure, the hard-tail comp<strong>on</strong>ent has a tendency to become<br />

str<strong>on</strong>ger but s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter towards sources with larger magnetic<br />

fields. To quantitatively evaluate this trend, we employ the<br />

1–60 keV fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t-thermal and hard-tail comp<strong>on</strong>ents,<br />

Fs and Fh, respectively, and then, calculate the hardness<br />

ratio (HR) between these two comp<strong>on</strong>ents, ξ ≡ Fh/Fs. As<br />

shown <strong>in</strong> Figure 6 (top), the HR is found to be tightly correlated<br />

with the magnetic field B as<br />

ξ = (0.09 ± 0.07) × (B/Bcr) 1.2±0.2<br />

with a correlati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.873, over the range from<br />

ξ ∼ 10 to ξ ∼ 0.1. On the other hand, as shown <strong>in</strong> Figure 6<br />

(bottom), the phot<strong>on</strong> <strong>in</strong>dex becomes s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter toward str<strong>on</strong>ger<br />

field pulsars with ξ becom<strong>in</strong>g larger.<br />

Although several scenarios have been proposed [13, 14,<br />

15, 16], the emissi<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the hard X-rays has<br />

not yet been resolved. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the biggest difficulties is<br />

how to expla<strong>in</strong> the extremely hard Γh ∼ 1 with its spectral<br />

trend depend<strong>in</strong>g <strong>on</strong> B. A possible candidate <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong><br />

process is phot<strong>on</strong>-splitt<strong>in</strong>gs [17, 18]. In ultra-str<strong>on</strong>g<br />

magnetic fields exceed<strong>in</strong>g Bcr, electr<strong>on</strong>-positr<strong>on</strong> pair cascades<br />

are suppressed, while the phot<strong>on</strong> splitt<strong>in</strong>g may be<br />

dom<strong>in</strong>ant. In this case, gamma-rays from the surface may<br />

repeatedly split <strong>in</strong>to lower energy phot<strong>on</strong>s. This process<br />

can also expla<strong>in</strong> the differences <strong>in</strong> Γh am<strong>on</strong>g magnetars, <strong>in</strong><br />

such a way that higher fields objects will allow the phot<strong>on</strong>splitt<strong>in</strong>g<br />

cascade to proceed down to lower energies, and<br />

hence to make the c<strong>on</strong>t<strong>in</strong>uum s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter.<br />

2 1 mCrab is <strong>on</strong>e-thousandth <str<strong>on</strong>g>of</str<strong>on</strong>g> the Crab Nebula <strong>in</strong>tensity, which is a<br />

standard candle <str<strong>on</strong>g>of</str<strong>on</strong>g> the astr<strong>on</strong>omy.<br />

(2)<br />

Hardness Ratio ξ = F h /F s<br />

Hardness Ratio ξ = F h /F s<br />

10<br />

1<br />

0.1<br />

10<br />

1<br />

0.1<br />

2259+58<br />

(b)<br />

0142+61<br />

0501+45<br />

(2009)<br />

0501+45<br />

(2008)<br />

0142+61<br />

1547-54<br />

1900+14<br />

1708-40<br />

1841-04<br />

10<br />

Magnetic Field (G)<br />

14 1015 0501+45<br />

1806-20<br />

1841-04<br />

1900+14<br />

1806-20<br />

0 0.5 1 1.5 2<br />

Phot<strong>on</strong> <strong>in</strong>dex Γ h<br />

1708-40<br />

1547-54<br />

Figure 6: (top) A correlati<strong>on</strong> between the HR ξ and the<br />

magnetic field B [12]. Green solid l<strong>in</strong>e represents the best<br />

fit <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> (2). SGRs and AXPs are shown <strong>in</strong> red and<br />

blue, respectively. (bottom) The HR ξ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong><br />

<strong>in</strong>dices Γh <str<strong>on</strong>g>of</str<strong>on</strong>g> the hard-tail comp<strong>on</strong>ent [12].<br />

REFERENCES<br />

[1] Hester, J. J., et al. 2002, Astrophys. J. Let., 577, L49<br />

[2] Manchester, R. N., et al., 2005, VizieR Onl<strong>in</strong>e Data Catalog<br />

[3] Goldreich, P., & Julian, W. H. 1969, Astrophys. J., 157, 869<br />

[4] Enoto T., et al., 2009, Suzaku <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> 2009 Proceedng<br />

[5] Duncan, R. C., & Thomps<strong>on</strong>, C. 1992, ApJL, 392, L9<br />

[6] Woods, P. M., & Thomps<strong>on</strong>, C. 2006, Compact stellar X-ray<br />

sources, 547<br />

[7] Mereghetti, S. 2008, Astr<strong>on</strong>. and Astrophy. Rev., 15, 225<br />

[8] Hurley, K., et al. 2005, Nature, 434, 1098<br />

[9] Ibrahim, A. I., et al., 2003, ApJL, 584, L17<br />

[10] Kuiper, L., et al., 2006, Astrophysical Journal, 645, 556<br />

[11] Mitsuda, K., et al. 2007, PASJ, 59, 1<br />

[12] Enoto, T., et al., 2010, ApJL, 722, L162<br />

[13] Heyl, J. S., & Hernquist, L. 2005, MNRAS, 362, 777<br />

[14] Thomps<strong>on</strong>, C., & Beloborodov, A. M. 2005, ApJ, 634, 565<br />

[15] Beloborodov, A. M., & Thomps<strong>on</strong>, C. 2007, ApJ, 657, 967<br />

[16] Bar<strong>in</strong>g, M. G., & Hard<strong>in</strong>g, A. K. 2001, ApJ, 547, 929<br />

[17] Bar<strong>in</strong>g, M. G., & Hard<strong>in</strong>g, A. K. 2001, ApJ., 547, 929<br />

[18] Enoto, T., et al. 2010, Ph.D thesis, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!