03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S = 1<br />

<br />

2<br />

dτ dξ d d−1 <br />

x⊥ (∂τ φ) 2 − (∂ξφ) 2<br />

−(m 2 φ 2 + (∂⊥φ) 2 ) e 2aξ , (6)<br />

is standard. The expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

normal modes (proporti<strong>on</strong>al to the Mc D<strong>on</strong>ald functi<strong>on</strong>s)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the associated wave equati<strong>on</strong> is given by<br />

<br />

dω<br />

φ(τ, ξ, x⊥) ∼ √ d<br />

2ω d−1 k⊥(a(ω, k⊥)e −iωτ+ik⊥x⊥<br />

<br />

m⊥ e aξ<br />

, m 2 ⊥ = (m 2 + k 2 ⊥)/a 2 , (7)<br />

+h.c.) Ki ω<br />

a<br />

and the normalizati<strong>on</strong> is chosen such that the commutator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong> and annihilati<strong>on</strong> operators a (†) (ω, k⊥) is standard.<br />

The repulsive exp<strong>on</strong>ential barrier <strong>in</strong> uniformly accelerated<br />

frames is <str<strong>on</strong>g>of</str<strong>on</strong>g> similar orig<strong>in</strong> as the centrifugal barrier<br />

<strong>in</strong> rotat<strong>in</strong>g frames. It prevents unlimited propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

wave <strong>in</strong> positive ξ directi<strong>on</strong>. This repulsi<strong>on</strong> accounts for the<br />

fact that a particle mov<strong>in</strong>g with arbitrary c<strong>on</strong>stant speed <strong>in</strong><br />

M<strong>in</strong>kowski space is seen by the accelerated observer to approach<br />

ξ = −∞ and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light for large times τ. In<br />

the accelerated frame, the transverse velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

vanishes exp<strong>on</strong>entially for large times (∼ exp{−2aτ})<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the forever <strong>in</strong>creas<strong>in</strong>g time dilati<strong>on</strong> <strong>in</strong>duced<br />

by the accelerati<strong>on</strong>. S<strong>in</strong>ce m 2 ⊥<br />

appears <strong>in</strong> the acti<strong>on</strong> (6) as<br />

a coupl<strong>in</strong>g c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> the exp<strong>on</strong>ential “potential” , the energy<br />

eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal modes do not depend <strong>on</strong> the<br />

transverse momentum and the mass, though the eigenfuncti<strong>on</strong>s<br />

do. This is rem<strong>in</strong>iscent <str<strong>on</strong>g>of</str<strong>on</strong>g> the degeneracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Landau<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle mov<strong>in</strong>g <strong>in</strong> a c<strong>on</strong>stant magnetic field.<br />

The high degeneracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian,<br />

<strong>in</strong>clud<strong>in</strong>g the ground state, is due to the <strong>in</strong>ertial force and<br />

has far reach<strong>in</strong>g c<strong>on</strong>sequences. It <strong>in</strong>dicates the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the R<strong>in</strong>dler space Hamilt<strong>on</strong>ian. In [1] the<br />

<strong>in</strong>variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian under scale transformati<strong>on</strong>s<br />

valid even <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a mass term has been identified<br />

as the source <str<strong>on</strong>g>of</str<strong>on</strong>g> the degeneracy.<br />

The Unruh heat bath<br />

Start<strong>in</strong>g po<strong>in</strong>t for establish<strong>in</strong>g the relati<strong>on</strong> between observables<br />

<strong>in</strong> <strong>in</strong>ertial and accelerated frames is the identity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

(scalar) fields (φ) and ( ˜ φ) <strong>in</strong> the two frames<br />

φ(τ, ξ, x⊥) = ˜ <br />

<br />

φ(t, x) . (8)<br />

t,x=t,x(τ,ξ)<br />

Projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this equati<strong>on</strong> <strong>on</strong>to the R<strong>in</strong>dler space normal<br />

modes (6) yields the follow<strong>in</strong>g relati<strong>on</strong> (Bogoliubov transformati<strong>on</strong>)<br />

between the creati<strong>on</strong> and annihilati<strong>on</strong> operators<br />

<strong>in</strong> the two frames<br />

a(Ω, k⊥) = <br />

a s<strong>in</strong>h π Ω<br />

a<br />

1<br />

∞<br />

−∞<br />

dk Ω i √ e a<br />

4πωk<br />

βk<br />

<br />

· e πΩ<br />

πΩ<br />

2a −<br />

ã(k, k⊥) + e 2a ã † (k, −k⊥)<br />

<br />

. (9)<br />

Observati<strong>on</strong>s <strong>in</strong> the accelerated frame are performed <strong>in</strong> the<br />

M<strong>in</strong>kowski vacuum |0M 〉 rather than <strong>in</strong> the R<strong>in</strong>dler space<br />

vacuum. A fundamental quantity is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

measured <strong>in</strong> the accelerated frame which, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(9), is found to be<br />

〈0M |a † (Ω, k⊥)a(Ω ′ , k ′ ⊥)|0M 〉<br />

1<br />

=<br />

Ω<br />

e2π a − 1 δ(Ω − Ω′ )δ(k⊥ − k ′ ⊥) . (10)<br />

In the accelerated frame, a thermal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (R<strong>in</strong>dler)<br />

particles is observed with the temperature determ<strong>in</strong>ed by<br />

the accelerati<strong>on</strong><br />

T = a<br />

. (11)<br />

2π<br />

For a black hole (cf. Eq. (5)) this temperature agrees with<br />

the black hole temperature<br />

TBH =<br />

1<br />

8πGM .<br />

Although the above derivati<strong>on</strong> makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>in</strong>teract<strong>in</strong>g fields, relati<strong>on</strong>s between observables <strong>in</strong><br />

accelerated frames and at f<strong>in</strong>ite temperature can be derived<br />

for <strong>in</strong>teract<strong>in</strong>g fields (cf. [9] for a derivati<strong>on</strong> with<strong>in</strong> the path<br />

<strong>in</strong>tegral approach). Here we c<strong>on</strong>sider the two po<strong>in</strong>t functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a self-<strong>in</strong>teract<strong>in</strong>g scalar field and use its <strong>in</strong>variance<br />

under Lorentz transformati<strong>on</strong>s. The relati<strong>on</strong> (8) between<br />

the fields <strong>in</strong> R<strong>in</strong>dler and M<strong>in</strong>kowski space implies that for<br />

arbitrary po<strong>in</strong>ts <strong>in</strong> the right R<strong>in</strong>dler wedge (cf. Fig. 1) the<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2-po<strong>in</strong>t functi<strong>on</strong>s <strong>in</strong> M<strong>in</strong>kowski space and <strong>in</strong><br />

R<strong>in</strong>dler space are equal. The two po<strong>in</strong>t functi<strong>on</strong>s depend<br />

<strong>on</strong>ly <strong>on</strong> (x − x ′ ) 2 . We express the distance <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

R<strong>in</strong>dler space coord<strong>in</strong>ates<br />

(x − x ′ ) 2 = 2ea(ξ+ξ′ )<br />

a2 ′<br />

cosh a(τ − τ ) − cosh η , (12)<br />

with<br />

cosh η = 1 +<br />

and obta<strong>in</strong><br />

<br />

aξ aξ e − e ′2 2 + a x⊥ − x ′ 2 ⊥<br />

2e a(ξ+ξ′ )<br />

, (13)<br />

D (x − x ′ ) 2 = D(τ − τ ′ , ξ, ξ ′ , x⊥ − x ′ ⊥)<br />

<br />

= i〈0M<br />

T φ(τ, ξ, x⊥)φ(τ ′ , ξ ′ , x ′ ⊥) 0M 〉<br />

a(ξ+ξ 2e<br />

= D<br />

′ )<br />

a2 ′<br />

cosh a(τ − τ ) − cosh η <br />

. (14)<br />

After a Wick rotati<strong>on</strong> to imag<strong>in</strong>ary R<strong>in</strong>dler time,<br />

τ → τE = −iτ ,<br />

the two po<strong>in</strong>t functi<strong>on</strong> is periodic with period<br />

β = 2π<br />

a ,<br />

and therefore is a f<strong>in</strong>ite temperature 2-po<strong>in</strong>t functi<strong>on</strong> with<br />

T = 1/β, <strong>in</strong> agreement with the result (11) for n<strong>on</strong><strong>in</strong>teract<strong>in</strong>g<br />

fields.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!