03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

field because <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lorentz <strong>in</strong>variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the M<strong>in</strong>kowski<br />

spacetime, which ensures existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the frame that the<br />

charged particle is at rest. However, <strong>on</strong> the electric field<br />

background, we have the radiati<strong>on</strong> energy from the process,<br />

which can be evaluated, as follows. Us<strong>in</strong>g the <strong>in</strong>-<strong>in</strong><br />

formalism [7, 8], we may compute the radiati<strong>on</strong> energy at<br />

the lowest order <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupl<strong>in</strong>g c<strong>on</strong>stant,<br />

E = ∑<br />

∫<br />

λ<br />

∑<br />

∫<br />

−2<br />

= ¯h<br />

λ<br />

d 3 k¯hk〈a λ†<br />

k aλ k〉<br />

d 3 ∫ ∞ ∫ ∞<br />

k¯hkRe dt2<br />

−∞<br />

<br />

× <strong>in</strong>|HI(t1)a λ†<br />

k aλkHI(t2)|<strong>in</strong> dt1<br />

−∞<br />

<br />

, (7)<br />

where we adopted the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tegrati<strong>on</strong> from the <strong>in</strong>f<strong>in</strong>ite<br />

past to the <strong>in</strong>f<strong>in</strong>ite future, and |<strong>in</strong>〉 denotes the <strong>in</strong>itial<br />

state, which we choose as <strong>on</strong>e charged particle state with<br />

the momentum pi, i.e., |<strong>in</strong>〉 = b † pi |0〉, and<br />

HI(t) = − ie<br />

∫<br />

d<br />

¯h<br />

3 xA µ<br />

{(<br />

× ∂µ − ie<br />

¯h Āµ<br />

)<br />

φ † φ − φ †<br />

(<br />

∂µ + ie<br />

¯h Āµ<br />

) }<br />

φ .(8)<br />

In order to evaluate the quantum correcti<strong>on</strong>, we c<strong>on</strong>sider<br />

the expansi<strong>on</strong> <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a power series <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h. Up to the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> O(¯h), we have<br />

where we def<strong>in</strong>ed<br />

E = E (0) + E (1) + O(¯h 2 ), (9)<br />

E (0) =<br />

(( 2 d x<br />

×<br />

dξ2 e2<br />

(4π) 2ɛ0 )2<br />

∫ ∫<br />

dΩˆ k dξ<br />

(<br />

− ˆk · d2x dξ2 )2)<br />

. (10)<br />

The expressi<strong>on</strong> (10) yields the classical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> the Larmor<br />

radiati<strong>on</strong> from a charged particle. The first-order quantum<br />

correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯h is described by<br />

E (1) =<br />

e2¯h (4π) 3 ∫ ∫ ∫<br />

dΩˆ k dξ dξ<br />

ɛ0<br />

′ 1<br />

ξ − ξ ′<br />

×<br />

{ (<br />

d d<br />

−<br />

dξ dξ ′<br />

)<br />

d d<br />

dξ dξ ′<br />

[( (ˆk<br />

dx<br />

)(<br />

· ˆk<br />

dx<br />

·<br />

dξ<br />

′<br />

dξ ′<br />

)<br />

− dx dx′<br />

·<br />

dξ dξ ′<br />

)(<br />

ˆk · dx dτ<br />

dt dt + ˆ k · dx′<br />

dt ′<br />

dτ ′<br />

dt ′<br />

+<br />

)]<br />

2 d2<br />

dξ2 d2 dξ ′2<br />

[( (ˆk<br />

dx<br />

)(<br />

· ˆk<br />

dx<br />

·<br />

dξ<br />

′<br />

dξ ′<br />

)<br />

− dx dx′<br />

·<br />

dξ dξ ′<br />

×<br />

)<br />

∫ ξ(t) ′′<br />

′′ dτ<br />

dξ<br />

dξ ′′<br />

( (<br />

1 − ˆk · dx′′<br />

dt ′′<br />

) 2)] }<br />

, (11)<br />

ξ ′ (t ′ )<br />

where we follow the notati<strong>on</strong>s <strong>in</strong> Ref.[1]<br />

APPROXIMATE FORMULAS<br />

In the n<strong>on</strong>-relativistic limit, where the velocity v =<br />

dx/dt is small enough compared with the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> light,<br />

|v| ≪ 1, Eqs. (10) and (11) reduce to<br />

E (0) e<br />

=<br />

2 ∫<br />

dt ˙v(t) · ˙v(t), (12)<br />

6πɛ0<br />

E (1) =<br />

e 2 ¯h<br />

6π 2 ɛ0m<br />

∫ ∫<br />

dt dt ′<br />

× ¨v(t) · ˙v(t′ ) − ˙v(t) · ¨v(t ′ )<br />

t − t ′ , (13)<br />

respectively. Eq. (13) was found for the first time by<br />

Higuchi and Walker <strong>in</strong> Ref. [3]. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic<br />

electric field, |E| = E0 s<strong>in</strong> ωt, where E0 is a c<strong>on</strong>stant,<br />

we have the periodic accelerati<strong>on</strong>, | ˙v| = (eE0/m) s<strong>in</strong> ωt.<br />

Then,<br />

dE (0)<br />

dt = e4E2 0<br />

m2 dE (1)<br />

dt = −¯he4 E2 0<br />

m2 s<strong>in</strong> 2 ωt<br />

,<br />

6πɛ0<br />

(14)<br />

ω<br />

.<br />

12πɛ0m<br />

(15)<br />

After tak<strong>in</strong>g an average over a l<strong>on</strong>g time-durati<strong>on</strong>, we have<br />

E (1)<br />

E<br />

¯hω<br />

= − , (16)<br />

(0) mc2 where c is the light velocity, which is restored here. The<br />

quantum effect becomes important when the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the accelerati<strong>on</strong> multiplied by c is comparable to the Compt<strong>on</strong><br />

wavelength, namely, when the wave-like feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle appears.<br />

Next, let us c<strong>on</strong>sider the relativistic limit, |pi| ≫<br />

|eA|, m. For simplicity, we c<strong>on</strong>sider the case when the<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle moti<strong>on</strong> is always parallel to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the background electric field, i.e., v ∝ A. Namely, we c<strong>on</strong>sider<br />

the case when the directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle’s moti<strong>on</strong><br />

and the background electric field are parallel at any moment,<br />

and adopt this directi<strong>on</strong> as the z axis. Then, we may<br />

write A = (0, 0, A(t)), A ˙ = (0, 0, −E(t)), v = (0, 0, v),<br />

and pi = (0, 0, pi). In this case, we have<br />

E (0) = 1 m<br />

6πɛ0<br />

4e4 p6 i<br />

∫<br />

dt<br />

˙<br />

A 2 (t)<br />

(1 − v2 . (17)<br />

) 3<br />

We c<strong>on</strong>sider the case, pi ≫ |eA|, m. We also assume<br />

|A| ∼ | ˙ A/ω| ∼ | Ä/ω2 |, where 1/ω is a time-scale <str<strong>on</strong>g>of</str<strong>on</strong>g> timevary<strong>in</strong>g<br />

background electric field. In this relativistic limit,<br />

we have<br />

E (1) − e4¯h 3(2π) 2 m<br />

ɛ0<br />

2<br />

p5 ∫ ∫<br />

dt dt<br />

i<br />

′<br />

×<br />

1<br />

(1 − ¯v 2 ) 3<br />

Ä(t) ˙ A(t ′ ) − ˙ A(t) Ä(t′ )<br />

t − t ′ . (18)<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the periodic background <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric<br />

field, ˙<br />

A(t) = −E0 s<strong>in</strong> ωt, where E0 is a c<strong>on</strong>stant, we have<br />

dE (0)<br />

dt = e4 m 4<br />

6πɛ0p 6 i<br />

E2 0 cos2 ωt<br />

(1 − v2 , (19)<br />

) 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!