03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ϵ is the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle, m is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle,<br />

and Es = m2 /(e¯h) is the Schw<strong>in</strong>ger field. This<br />

can be understood by observ<strong>in</strong>g that the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted<br />

radiati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> an energetic electr<strong>on</strong> <strong>in</strong> a c<strong>on</strong>stant<br />

magnetic field versus its energy is approximately given by<br />

(¯hω0/ϵ) (ϵ/m) 3 = B⊥ϵ/(mEs), where ω0 = eB⊥/ϵ.<br />

Further details can be found <strong>in</strong> [5]. In the lab frame this<br />

parameter becomes the quantum efficiency parameters χ<br />

χ = e¯h<br />

√<br />

− (F µν pν) 2<br />

m3 , (3)<br />

where pν is the electr<strong>on</strong> or positr<strong>on</strong> 4-momentum. In the<br />

classical radiati<strong>on</strong> realm the emitted phot<strong>on</strong> energies are<br />

much smaller than the charged particle energy. Hence,<br />

χ ≪ 1 holds. In the quantum realm χ ≫ 1 is valid. The<br />

transiti<strong>on</strong> rate for radiati<strong>on</strong> emissi<strong>on</strong> depends <strong>on</strong> a sec<strong>on</strong>d<br />

quantum parameter κ given by<br />

κ = e¯h<br />

√<br />

− (F µν kν) 2<br />

m3 , (4)<br />

where kν is the phot<strong>on</strong> 4-momentum. The angle <strong>in</strong>tegrated<br />

transiti<strong>on</strong> rate for phot<strong>on</strong> emissi<strong>on</strong> is<br />

where<br />

dWγ<br />

dω<br />

(∫ ∞<br />

m2<br />

= −α<br />

ϵ2 dz Ai(z) (5)<br />

x<br />

[<br />

2<br />

+<br />

x + κ √ ] )<br />

x ∂zAi(x) ,<br />

[<br />

κ<br />

x =<br />

χ (χ − κ)<br />

] 2<br />

3<br />

, 0 ≤ κ < χ . (6)<br />

The rate holds for radiati<strong>on</strong> emissi<strong>on</strong> by electr<strong>on</strong>s or<br />

positr<strong>on</strong>s. In the simulati<strong>on</strong>s we assume that<br />

′<br />

⃗k = ⃗p + ⃗p (7)<br />

holds for the momenta. For the energy balance we f<strong>in</strong>d<br />

q + ω = ϵ ′<br />

+ ϵ . (8)<br />

Mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqns. (7) and (8) the energy taken from the<br />

external laser field is<br />

q =<br />

√<br />

ϵ 2 + 2ωϵ ′ (1 − v ′ cos θ) − ϵ ,<br />

where θ is the angle between the emitted phot<strong>on</strong> and the<br />

outgo<strong>in</strong>g electr<strong>on</strong> or positr<strong>on</strong> ⃗p ′<br />

and v ′<br />

= |⃗p ′<br />

|/ϵ ′<br />

is the<br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> or positr<strong>on</strong> after the radiati<strong>on</strong> process.<br />

For electr<strong>on</strong>s or positr<strong>on</strong>s reta<strong>in</strong><strong>in</strong>g large momenta ⃗p ′<br />

al<strong>on</strong>g ⃗k after the emissi<strong>on</strong> process v ′<br />

cos θ ≈ 1 holds. The<br />

external field has to deliver <strong>on</strong>ly little energy, q ≈ 0, <strong>in</strong> that<br />

case. Given the electr<strong>on</strong> or positr<strong>on</strong> 4-momentum and the<br />

external field c<strong>on</strong>text χ can be calculated. In a sec<strong>on</strong>d step<br />

κ is obta<strong>in</strong>ed for permissible phot<strong>on</strong> emissi<strong>on</strong> and hence x.<br />

With the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the cross<strong>in</strong>g symmetry the angle <strong>in</strong>tegrated<br />

transiti<strong>on</strong> rate for e + e−-pair creati<strong>on</strong> is given by<br />

where<br />

dW e + e −<br />

dϵ−<br />

= α m2<br />

ω2 (∫ ∞<br />

y<br />

+<br />

[<br />

κ<br />

y =<br />

χ (κ − χ)<br />

[<br />

2<br />

y − κ √ ]<br />

y<br />

] 2<br />

3<br />

dz Ai(z) (9)<br />

)<br />

∂zAi(y) ,<br />

, 0 ≤ χ < κ . (10)<br />

The follow<strong>in</strong>g k<strong>in</strong>ematic relati<strong>on</strong>s are used when pairs are<br />

created<br />

⃗ k = ⃗p+ + ⃗p− , (11)<br />

q + ω = ϵ+ + ϵ− . (12)<br />

Mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqns. (11) and (12) the energy taken from<br />

the external laser field is<br />

√<br />

q = ϵ2 − + 2ωϵ+ (1 − v+ cos θ) − ϵ− ,<br />

where θ is the angle between the phot<strong>on</strong> and the emitted<br />

positr<strong>on</strong>, and v+ = |⃗p+|/ϵ+ is the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the positr<strong>on</strong>.<br />

Given a phot<strong>on</strong> 4-vector and the field c<strong>on</strong>text κ can be obta<strong>in</strong>ed.<br />

Next it is possible to calculate χ for any permissible<br />

electr<strong>on</strong> energy and hence y.<br />

If χ and κ are large enough we f<strong>in</strong>d that phot<strong>on</strong>s generate<br />

electr<strong>on</strong>s and positr<strong>on</strong>s and the latter aga<strong>in</strong> phot<strong>on</strong>s.<br />

The cha<strong>in</strong> process leads to exp<strong>on</strong>ential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

<strong>in</strong> the simulati<strong>on</strong>. The soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<strong>in</strong>g transport<br />

equati<strong>on</strong>s for uniform circular polarized light is approximately<br />

N e + e −(t) = N e + e −(0) e Γ t , (13)<br />

where the growth rate Γ can be estimated as<br />

Γ = α µ 1<br />

√<br />

m ω c2 4 ,<br />

¯h<br />

µ = E<br />

.<br />

α Es<br />

(14)<br />

Here E is the external field.<br />

Quantum efficiency becomes very large <strong>in</strong> circular<br />

purely electric fields. Hence we c<strong>on</strong>sider two counterpropagat<strong>in</strong>g<br />

circular laser beams <strong>in</strong> the center <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

there is a rotat<strong>in</strong>g electric field. Figure 1 shows the situati<strong>on</strong><br />

and the simulati<strong>on</strong> results. Al<strong>on</strong>g the purple l<strong>in</strong>e electr<strong>on</strong>s<br />

are <strong>in</strong>jected <strong>in</strong>to the laser focus at 600 MeV. Red and<br />

green l<strong>in</strong>es represent sec<strong>on</strong>dary electr<strong>on</strong>s and positr<strong>on</strong>s. As<br />

a ma<strong>in</strong> result we f<strong>in</strong>d that the mean energy per particles is<br />

not decreas<strong>in</strong>g <strong>in</strong> the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the cascade development.<br />

The c<strong>on</strong>trary could be expected s<strong>in</strong>ce the number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

particles grows exp<strong>on</strong>entially. The f<strong>in</strong>d<strong>in</strong>g implies<br />

enhanced energy depositi<strong>on</strong>. In fact, the empirical observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> almost c<strong>on</strong>stant mean energy per particle represents<br />

exp<strong>on</strong>entially grow<strong>in</strong>g energy depositi<strong>on</strong> <strong>in</strong> the evolv<strong>in</strong>g<br />

plasma.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!