03.07.2013 Views

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

Proceedings of International Conference on Physics in ... - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pair producti<strong>on</strong> <strong>in</strong> heat bath<br />

F<strong>in</strong>ally, we give another example for the utility <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

chiral anomaly, Schw<strong>in</strong>ger mechanism <strong>in</strong> heat bath. That<br />

is, the pair producti<strong>on</strong> arises <strong>in</strong> heat bath and the produced<br />

particles are thermalized immediately after their producti<strong>on</strong>.<br />

Thus, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles is given by a<br />

Fermi distributi<strong>on</strong> with f<strong>in</strong>ite temperature.<br />

For simplicity, we assume that the electric field is uniform<br />

and we take <strong>in</strong>to account <strong>on</strong>ly back reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<strong>in</strong>g<br />

the electric field energy by pair producti<strong>on</strong>s. In<br />

this case we need electric current <strong>in</strong> the heat bath when<br />

we solve a Maxwell equati<strong>on</strong> ∂tE = −J. As expla<strong>in</strong>ed<br />

above, we impose the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy c<strong>on</strong>servati<strong>on</strong>,<br />

∫<br />

3 1<br />

∂t d x( 2E2 + ϵ) = ∫ d3x(−EJ + ∂tϵ) = 0 <strong>in</strong> order to<br />

f<strong>in</strong>d J. Here the energy density is given by<br />

∫ ∞<br />

p<br />

ϵ = γ dp<br />

(11)<br />

1 + exp(p − µ(t))β<br />

0<br />

with β = 1/T where T is the temperature, where µ(t) is<br />

the chemical potential which depends <strong>on</strong> the number density<br />

ne(t) through the formula,<br />

∫ ∞<br />

1<br />

ne = γ dp<br />

. (12)<br />

1 + exp(p − µ(t))β<br />

0<br />

Us<strong>in</strong>g the formulae ∂tϵ = ∂nϵ∂tne = ∂nϵγEB <strong>in</strong> the c<strong>on</strong>diti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the energy c<strong>on</strong>servati<strong>on</strong>, we f<strong>in</strong>d that J = γB∂nϵ.<br />

Therefore, us<strong>in</strong>g the anomaly equati<strong>on</strong> and Maxwell<br />

equati<strong>on</strong>, we obta<strong>in</strong> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ne,<br />

∂ 2 t ne + 2γeB ne exp(neβ/n0)<br />

= 0, (13)<br />

exp(neβ/n0) − 1<br />

with n0 ≡ eB/8π 2 . It is easy to see that the formula <strong>in</strong><br />

the heat bath is reduced to the <strong>on</strong>e <strong>in</strong> vaccum when we<br />

take β → ∞; effective mass becomes m = √ e 3 B/4π 2<br />

as we have shown above; the mass means the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ne(t) ∝ s<strong>in</strong>(mt).<br />

Although we can not analytically solve the equati<strong>on</strong>, numerical<br />

soluti<strong>on</strong>s are available. We have shown the temporal<br />

behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> the number density (Fig. 3) and the electric<br />

field (Fig. 4) <strong>in</strong> both vacuum and heat bath. We can see<br />

that the electric field decays more rapidly <strong>in</strong> the heat bath<br />

than <strong>in</strong> vacuum. Similarly, we see that the number density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and positr<strong>on</strong>s is smaller <strong>in</strong> the heat bath<br />

than <strong>in</strong> vacuum. This is caused by the fact that accord<strong>in</strong>g<br />

to the Fermi distributi<strong>on</strong>, each electr<strong>on</strong> and positr<strong>on</strong> can<br />

have much larger energies <strong>in</strong> the heat bath with f<strong>in</strong>ite β<br />

than <strong>in</strong> vacuum with β = ∞ when it is produced. S<strong>in</strong>ce a<br />

pair producti<strong>on</strong> <strong>in</strong> the heat bath decreases the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field more than <strong>in</strong> vacuum, the electric field decays<br />

more rapidly <strong>in</strong> the heat bath than <strong>in</strong> vacuum. Therefore,<br />

we f<strong>in</strong>d that Schw<strong>in</strong>ger muchanism proceeds more effectively<br />

<strong>in</strong> heat bath than <strong>in</strong> vacuum.<br />

CONCLUSION<br />

To summarize, we have shown that simply us<strong>in</strong>g the chiral<br />

anomaly we can obta<strong>in</strong> physically <strong>in</strong>terest<strong>in</strong>g quantities<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.5 1.0 1.5 2.0 2.5<br />

Figure 3: number densities ne(t) with arbitrary scale <strong>in</strong><br />

vacuum (dash) and <strong>in</strong> heat bath (l<strong>in</strong>e)<br />

1.0<br />

0.5<br />

0.5<br />

0.5 1.0 1.5 2.0 2.5<br />

Figure 4: electric fields E(t) with arbitrary scale <strong>in</strong> vacuum<br />

(dash) and <strong>in</strong> heat bath (l<strong>in</strong>e)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Schw<strong>in</strong>ger mechanism without calculat<strong>in</strong>g wave functi<strong>on</strong>s.<br />

Thus, we can discuss pair producti<strong>on</strong>s under electric<br />

flux tube <strong>in</strong> vacuum or homogeneous electric field <strong>in</strong><br />

heat bath, which could not be obta<strong>in</strong>ed with the method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s. The simplificati<strong>on</strong> comes<br />

from the fact that the problem <strong>in</strong> Schw<strong>in</strong>ger mechanism<br />

is reduced to <strong>on</strong>e dimenti<strong>on</strong>al <strong>on</strong>e when str<strong>on</strong>g magnetic<br />

field is present. Such a coll<strong>in</strong>ear str<strong>on</strong>g magnetic field and<br />

electric field (B, E ≫ (electr<strong>on</strong> mass or quark mass) 2 )<br />

are produced by high-energy heavy-i<strong>on</strong> collisi<strong>on</strong>s [5]. In<br />

the collisi<strong>on</strong>s, corresp<strong>on</strong>d<strong>in</strong>g str<strong>on</strong>g fields are color electric<br />

and magnetic fields. Thus, they decay <strong>in</strong>to quarks by<br />

Schw<strong>in</strong>ger mechanism very rapidly (< 1fm/c).<br />

REFERENCES<br />

[1] J. Schw<strong>in</strong>ger, Phys. Rev. 82 (1951) 664.<br />

[2] N. Tanji, Ann. Phys. 324 (2009) 1691; see references there<strong>in</strong>.<br />

[3] A. Iwazaki, Phys. Rev. C80 (2009) 052202.<br />

[4] S.P. Gavrilov and D.M. Gitman, Phys. Rev. D53 (1996) 7162.<br />

[5] E. Iancu, A. Le<strong>on</strong>idov and L. McLerran, hep-ph/0202270.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!