11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Results in Approximation Theory 109<br />

Theorem 6.4.2 - Let −1 < α < 1, −1 < β < 1 and k ≥ 1, then we can find a<br />

constant C > 0 such that, for any f ∈ H k w(I), one has<br />

(6.4.6) f − Π 1 w,nf H 1 w (I) ≤ C<br />

k−1 <br />

1 <br />

(1 − x<br />

n<br />

2 ) (k−1)/2 dkf dxk <br />

<br />

<br />

Proof - We first consider f ∈ C ∞ ( Ī). Let x0 ∈ I and set<br />

(6.4.7) qn(x) :=<br />

From (6.4.4) we can wr<strong>it</strong>e<br />

<br />

f(x0) +<br />

x<br />

x0<br />

(Πw,n−1f ′ <br />

)(t) dt<br />

(6.4.8) f − Π 1 w,nf H 1 w (I) ≤ f − qn H 1 w (I)<br />

=<br />

L 2 w (I)<br />

<br />

f − qn 2 L2 w (I) + f ′ − Πw,n−1f ′ 2 L2 w (I)<br />

1<br />

2<br />

.<br />

On the other hand, we have by the Schwarz inequal<strong>it</strong>y<br />

(6.4.9) f − qn 2 L2 w (I) =<br />

<br />

≤<br />

I<br />

<br />

=<br />

<br />

I<br />

x<br />

x0<br />

<br />

I<br />

<br />

f(x) − f(x0) −<br />

x<br />

(f ′ − Πw,n−1f ′ )(t) w(t)<br />

x<br />

(f ′ − Πw,n−1f ′ ) 2 (t) w(t) dt<br />

x0<br />

≤ f ′ − Πw,n−1f ′ 2 L 2 w (I)<br />

<br />

I<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

·<br />

<br />

<br />

<br />

<br />

x<br />

x0<br />

x0<br />

x<br />

x0<br />

∈ Pn, n ≥ 1.<br />

, ∀n > k.<br />

(Πw,n−1f ′ 2 )(t)dt w(x)dx<br />

2 dt<br />

w(x) dx<br />

w(t)<br />

w −1 <br />

<br />

(t) dt<br />

w(x) dx<br />

w −1 <br />

<br />

(t)dt<br />

w(x) dx.<br />

We note that the last integral in (6.4.9) is fin<strong>it</strong>e when −1 < α < 1 and −1 < β < 1.<br />

At this point we can conclude after subst<strong>it</strong>uting (6.4.9) in (6.4.8) and recalling theorem<br />

6.2.4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!