11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6 Polynomial Approximation of Differential Equations<br />

Both (1.3.4) and (1.3.5) can be checked by direct subst<strong>it</strong>ution in (1.3.1). A lot of<br />

formulas relate Jacobi polynomials corresponding to different choices of the pair of<br />

parameters (α, β). We show one of the most representative, i.e.<br />

(1.3.6)<br />

d<br />

<br />

dx<br />

P (α,β)<br />

n<br />

<br />

= 1<br />

2<br />

By (1.3.4) or (1.3.5) <strong>it</strong> is clear that<br />

(α, β)<br />

(1.3.7) P<br />

0 (x) = 1 , P<br />

(n + α + β + 1) P (α+1, β+1)<br />

n−1 , n ≥ 1.<br />

(α, β)<br />

1<br />

(x) = 1<br />

1<br />

(α + β + 2)x + (α − β).<br />

2 2<br />

Since (1.3.4) and (1.3.5) are qu<strong>it</strong>e unpracticable, higher degree polynomials can be<br />

determined using theorem 1.1.1. More precisely, we have<br />

(1.3.8) ρn =<br />

τn = −<br />

σn =<br />

(2n + α + β) (2n + α + β − 1)<br />

,<br />

2n(n + α + β)<br />

(α 2 − β 2 ) (2n + α + β − 1)<br />

2n (n + α + β) (2n + α + β − 2) ,<br />

Moreover, one has: ρ1 = 1<br />

2 (α + β + 2), σ1 = 1<br />

2<br />

using (1.1.3) or (1.3.6).<br />

(n + α − 1) (n + β − 1) (2n + α + β)<br />

, n ≥ 2.<br />

n (n + α + β) (2n + α + β − 2)<br />

(α − β). Derivatives can be recovered<br />

Finally, we present the following estimate in the interval Ī (see szegö (1939)):<br />

(1.3.9) max<br />

−1≤x≤1<br />

|P (α,β)<br />

n<br />

<br />

(x) | = max |P (α,β)<br />

<br />

n (±1)| = max<br />

n + α<br />

n<br />

<br />

,<br />

n + β<br />

n<br />

<br />

,<br />

n ∈ N.<br />

Further properties can be proven for the so called ultraspherical (or Gegenbauer)<br />

polynomials. These are Jacobi polynomials where α = β. We soon see two celebrated<br />

examples.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!