11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

290 Polynomial Approximation of Differential Equations<br />

n pn(0,0)<br />

2 1.570796326<br />

4 1.856395658<br />

6 1.851713702<br />

8 1.851563407<br />

10 1.851562860<br />

12 1.851563065<br />

Table 13.3.1 - Approximations of U(0,0).<br />

13.4 The incompressible Navier-Stokes equations<br />

The Navier-Stokes equations describe, w<strong>it</strong>h a good degree of accuracy, the motion of a<br />

viscous incompressible fluid in a region Ω (see for instance batchelor(1967)). They<br />

find applications in aeronautics, meteorology, plasma physics, and in other sciences.<br />

In two dimensions Ω is an open set of R 2 . The unknowns, depending on the space<br />

variables (x,y) ∈ ¯ Ω and the time variable t ∈ [0,T], T > 0, are the two components<br />

of the veloc<strong>it</strong>y vector field V ≡ (V1,V2), Vi : Ω × [0,T] → R, 1 ≤ i ≤ 2, and the<br />

pressure P : Ω×]0,T] → R. Assuming that the dens<strong>it</strong>y of the fluid is constant, after<br />

dimensional scaling the equations become<br />

(13.4.1)<br />

(13.4.2)<br />

(13.4.3)<br />

∂V1<br />

∂t<br />

∂V2<br />

∂t<br />

∂V1<br />

+ V1<br />

∂x<br />

∂V2<br />

+ V1<br />

∂x<br />

∂V1<br />

∂x<br />

+ ∂V2<br />

∂y<br />

∂V1<br />

+ V2<br />

∂y − ν ∆V1 = − ∂P<br />

∂x<br />

∂V2<br />

+ V2<br />

∂y − ν ∆V2 = − ∂P<br />

∂y<br />

= 0 in Ω×]0,T],<br />

in Ω×]0,T],<br />

in Ω×]0,T],

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!