11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ordinary Differential Equations 203<br />

(9.4.17) Bw,n(ψ,φ) :=<br />

<br />

(ψ −<br />

I<br />

˜ ψ) ′ [(φ − ˜ φ)w] ′ dx +<br />

<br />

+ µ (Ia,n−1ψ)(φ −<br />

I<br />

˜ <br />

φ)w dx + µ<br />

(9.4.18) Fw,n(φ) :=<br />

<br />

(Ia,n−1f)(φ −<br />

I<br />

˜ φ)w dx +<br />

<br />

I<br />

˜ψ ′ ˜ φ ′ dx<br />

(Ia,n−1ψ)<br />

I<br />

˜ φ dx, ∀ψ,φ ∈ Pn,<br />

+σ2φ(1) − σ1φ(−1), ∀φ ∈ Pn,<br />

<br />

(Ia,n−1f)<br />

I<br />

˜ φ dx<br />

where a(x) := (1 − x 2 )w(x), x ∈ I, and the interpolation operator Ia,n−1, n ≥ 2, is<br />

defined in section 3.3.<br />

Our aim is to show that (9.4.16) leads to a collocation type approximation. First,<br />

assume φ ∈ P 0 n so that ˜ φ ≡ 0. W<strong>it</strong>h the help of integration by parts and quadrature<br />

formula (3.5.1), we obtain<br />

(9.4.19) −<br />

n<br />

j=0<br />

=<br />

p ′′ n(η (n)<br />

j )φ(η (n)<br />

j ) ˜w (n)<br />

j<br />

n<br />

j=0<br />

+ µ<br />

n<br />

j=0<br />

(Ia,n−1pn)(η (n)<br />

j )φ(η (n)<br />

j ) ˜w (n)<br />

j<br />

(Ia,n−1f)(η (n)<br />

j )φ(η (n)<br />

j ) ˜w (n)<br />

j , ∀φ ∈ P 0 n.<br />

Choosing φ := ˜ l (n)<br />

i , 1 ≤ i ≤ n − 1, (9.4.19) implies<br />

(9.4.20) −p ′′ n(x) + µ(Ia,n−1pn)(x) = (Ia,n−1f)(x) at x = η (n)<br />

i , 1 ≤ i ≤ n − 1.<br />

Note that, for any g ∈ C0 ( Ī), one has<br />

(n)<br />

(n)<br />

(Ia,n−1g)(η i ) = ( Ĩw,ng)(η i ) = g(η (n)<br />

i ),<br />

1 ≤ i ≤ n − 1. This gives −p ′′ n(η (n)<br />

i ) + µpn(η (n)<br />

i ) = f(η (n)<br />

i ), 1 ≤ i ≤ n − 1. Moreover,<br />

for a general φ ∈ Pn, we have a relation like (9.3.21). Both −p ′′ n + µIa,n−1pn and<br />

Ia,n−1f are polynomials of degree n −2. Since they coincide at n −1 points, (9.4.20)<br />

holds for any x ∈ Ī. This enables us to remove the integrals and recover the boundary<br />

cond<strong>it</strong>ions −p ′ n(−1) = −σ1 and p ′ n(1) = σ2. To obtain the corresponding linear<br />

system we follow the suggestions of section 7.4 (see (7.4.13)).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!