11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

224 Polynomial Approximation of Differential Equations<br />

(10.2.7) V (−1,t) = V (1,t) = 0, ∀t ∈ [0,T],<br />

where f(x,t) := − 1<br />

2 (1 − x)σ′ 1(t) − 1<br />

2 (1 + x)σ′ 2(t), x ∈ I, t ∈]0,T]. Here, we require<br />

that the functions σ1 and σ2 are differentiable.<br />

We intend to use spectral methods in order to approximate the unknown V . To<br />

this end, for any t ∈ [0,T], the function V (·,t) : I → R is approximated by an<br />

algebraic polynomial pn(·,t) ∈ P 0 n (see (6.4.11)), where the integer n ≥ 2 has been<br />

fixed in advance. For example, we use the collocation method (see section 9.2). The<br />

approximate problem is<br />

(10.2.8)<br />

∂pn<br />

∂t (η(n) i ,t) = ζ ∂2pn ∂x<br />

(η(n)<br />

2 i ,t) + f(η (n)<br />

i ,t), 1 ≤ i ≤ n − 1, ∀t ∈]0,T].<br />

As usual, the nodes η (n)<br />

d (α,β)<br />

i , 1 ≤ i ≤ n − 1, are the zeroes of the polynomial dxP n ,<br />

α > −1, β > −1. In<strong>it</strong>ial and boundary cond<strong>it</strong>ions are respectively given by<br />

(10.2.9) pn(η (n)<br />

i ,0) = U0(η (n)<br />

i ) − 1<br />

2 (1−η(n)<br />

i )U0(−1) − 1<br />

2 (1+η(n)<br />

i )U0(1), 0 ≤ i ≤ n,<br />

(10.2.10) pn(η (n)<br />

0 ,t) = pn(η (n)<br />

n ,t) = 0, ∀t ∈ [0,T].<br />

At this point, our problem is transformed into a (n + 1) × (n + 1) linear system of<br />

ordinary differential equations. Actually, w<strong>it</strong>h the notations of sections 7.2 and 7.4, we<br />

can wr<strong>it</strong>e for any t ∈]0,T] (we choose for instance n = 4):<br />

(10.2.11)<br />

d<br />

dt<br />

⎡<br />

pn(η<br />

⎢<br />

⎣<br />

(n)<br />

1 ,t)<br />

pn(η (n)<br />

⎤ ⎡<br />

⎥ ⎢<br />

⎥ ⎢<br />

2 ,t) ⎥ = ζ ⎢<br />

⎦ ⎣<br />

pn(η (n)<br />

3 ,t)<br />

˜d (2)<br />

11<br />

˜d (2)<br />

21<br />

˜d (2)<br />

31<br />

˜d (2)<br />

12<br />

˜d (2)<br />

22<br />

˜d (2)<br />

32<br />

˜d (2)<br />

13<br />

˜d (2)<br />

23<br />

˜d (2)<br />

33<br />

⎤⎡<br />

pn(η<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎦⎣<br />

(n)<br />

1 ,t)<br />

pn(η (n)<br />

⎤<br />

⎥<br />

2 ,t) ⎥<br />

⎦ +<br />

⎡<br />

f(η<br />

⎢<br />

⎣<br />

(n)<br />

1 ,t)<br />

f(η (n)<br />

⎤<br />

⎥<br />

2 ,t) ⎥<br />

⎦ .<br />

pn(η (n)<br />

3 ,t)<br />

f(η (n)<br />

3 ,t)<br />

Together w<strong>it</strong>h cond<strong>it</strong>ion (10.2.9), this differential system adm<strong>it</strong>s a unique solution.<br />

Moreover, following the remarks of section 8.2, the eigenvalues of the matrix in (10.2.11)<br />

are distinct, real and negative, under su<strong>it</strong>able assumptions on the parameters α and β.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!