11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Derivative Matrices 139<br />

(7.4.1)<br />

⎧<br />

⎨<br />

⎩<br />

p ′ (η (n)<br />

i ) = q(η (n)<br />

i ) 1 ≤ i ≤ n,<br />

p(η (n)<br />

0 ) = σ.<br />

This is equivalent to a linear system in the unknowns p(η (n)<br />

i ), 0 ≤ i ≤ n. For example,<br />

when n = 3, w<strong>it</strong>h the notations of section 7.2, we get<br />

(7.4.2)<br />

⎡<br />

⎢<br />

⎣<br />

1 0 0 0<br />

˜d (1)<br />

10<br />

˜d (1)<br />

20<br />

˜d (1)<br />

30<br />

˜d (1)<br />

11<br />

˜d (1)<br />

21<br />

˜d (1)<br />

31<br />

˜d (1)<br />

12<br />

˜d (1)<br />

22<br />

˜d (1)<br />

32<br />

˜d (1)<br />

13<br />

˜d (1)<br />

23<br />

˜d (1)<br />

33<br />

⎤⎡<br />

p(η<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎦⎢<br />

⎣<br />

(n)<br />

0 )<br />

p(η (n)<br />

1 )<br />

p(η (n)<br />

⎤<br />

⎥<br />

2 ) ⎥<br />

⎦<br />

p(η (n)<br />

3 )<br />

=<br />

⎡<br />

σ<br />

⎢<br />

⎢q(η<br />

⎢<br />

⎣<br />

(n)<br />

1 )<br />

q(η (n)<br />

⎤<br />

⎥<br />

⎥.<br />

⎥<br />

2 ) ⎥<br />

⎦<br />

q(η (n)<br />

3 )<br />

If r ∈ Pn is the solution of (7.4.2) w<strong>it</strong>h σ = 0, we note that r satisfies<br />

(7.4.3)<br />

⎡<br />

⎢<br />

⎣<br />

˜d (1)<br />

11<br />

˜d (1)<br />

21<br />

˜d (1)<br />

31<br />

˜d (1)<br />

12<br />

˜d (1)<br />

22<br />

˜d (1)<br />

32<br />

˜d (1)<br />

13<br />

˜d (1)<br />

23<br />

˜d (1)<br />

33<br />

⎤⎡<br />

r(η<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎦⎣<br />

(n)<br />

1 )<br />

r(η (n)<br />

⎤<br />

⎥<br />

2 ) ⎥<br />

⎦ =<br />

r(η (n)<br />

3 )<br />

⎡<br />

q(η<br />

⎢<br />

⎣<br />

(n)<br />

1 )<br />

q(η (n)<br />

⎤<br />

⎥<br />

2 ) ⎥<br />

⎦ .<br />

q(η (n)<br />

3 )<br />

Therefore, we reduced the in<strong>it</strong>ial (n + 1) × (n + 1) system to a n × n system. The<br />

final solution is then obtained by setting p = r + σ.<br />

Another interesting problem is stated as follows. For q ∈ Pn and γ ∈ R, γ = 0,<br />

find p ∈ Pn such that<br />

(7.4.4)<br />

⎧<br />

⎨<br />

⎩<br />

p ′ (η (n)<br />

i ) = q(η (n)<br />

i ) 1 ≤ i ≤ n,<br />

p ′ (η (n)<br />

0 ) + γp(η (n)<br />

0 ) = q(η (n)<br />

0 ) + γσ.<br />

We observe that now the boundary constraint is not exactly imposed. Actually, we<br />

are trying to enforce both the equation and the boundary cond<strong>it</strong>ion at the point η (n)<br />

0 .<br />

Using the Lagrange polynomials introduced in theorem 3.2.1, an equivalent formulation<br />

is:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!