11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

256 Polynomial Approximation of Differential Equations<br />

Due to the different behavior of U in the two subdomains, the best results are<br />

obtained w<strong>it</strong>h an uneven distribution of nodes (n1 > n2). A correct balance of the two<br />

parameters guarantees performances as good as the ones of the single-domain approxi-<br />

mation, w<strong>it</strong>h the same degrees of freedom and a lower computational cost. In fact, the<br />

matrices involved in the multidomain approach are block-diagonal, w<strong>it</strong>h a number of<br />

blocks equal to the number of subdomains and a bandwidth proportional to the largest<br />

degree used. We can take advantage of this structure for a more efficient numerical<br />

implementation. The details are discussed in section 11.3. In (11.2.23), we explic<strong>it</strong>ly<br />

wr<strong>it</strong>e the system from the above example w<strong>it</strong>h n1 = n2 = 2 (hence γ1 = 3):<br />

(11.2.13)<br />

⎡<br />

⎢<br />

⎣<br />

1 0 0 0 0 0<br />

−4 ˜ d (2)<br />

10 −4 ˜ d (2)<br />

11 −4 ˜ d (2)<br />

12 0 0 0<br />

0 0 1 −1 0 0<br />

τ1 τ2 τ3 τ4 τ5 τ6<br />

0 0 0 −4 ˜ d (2)<br />

10 −4 ˜ d (2)<br />

11 −4 ˜ d (2)<br />

12<br />

0 0 0 0 0 1<br />

⎤⎡<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎥⎢<br />

⎦⎢<br />

⎣<br />

pn1,1(θ (n1,1)<br />

0<br />

pn1,1(θ (n1,1)<br />

1<br />

pn1,1(θ (n1,1)<br />

2<br />

pn2,2(θ (n2,2)<br />

0<br />

pn2,2(θ (n2,2)<br />

1<br />

pn2,2(θ (n2,2)<br />

2 )<br />

⎤ ⎡<br />

)<br />

⎥ ⎢<br />

) ⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

) ⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥=<br />

⎢<br />

) ⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

) ⎥ ⎢<br />

⎥ ⎢<br />

⎦ ⎣<br />

σ1<br />

⎥<br />

) ⎥<br />

0 ⎥<br />

f(s1) ⎥<br />

) ⎥<br />

⎦<br />

f(θ (n1,1)<br />

1<br />

f(θ (n2,2)<br />

1<br />

where τ1 := −2 ˜ d (2)<br />

20 + 2γ1 ˜ d (1)<br />

20 , τ2 := −2 ˜ d (2)<br />

21 + 2γ1 ˜ d (1)<br />

21 , τ3 := −2 ˜ d (2)<br />

22 + 2γ1 ˜ d (1)<br />

22 ,<br />

τ4 := −2 ˜ d (2)<br />

00 −2γ1 ˜ d (1)<br />

00 , τ5 := −2 ˜ d (2)<br />

01 −2γ1 ˜ d (1)<br />

01 , τ6 := −2 ˜ d (2)<br />

02 −2γ1 ˜ d (1)<br />

02 . We can remove<br />

one unknown by eliminating the third row and summing up the third and the fourth<br />

columns. Similarly, cond<strong>it</strong>ion (11.2.6) is imposed by defining τ1 := 2 ˜ d (1)<br />

20 , τ2 := 2 ˜ d (1)<br />

21 ,<br />

τ3 := 2 ˜ d (1)<br />

22 , τ4 := −2 ˜ d (1)<br />

00 , τ5 := −2 ˜ d (1)<br />

01 , τ6 := −2 ˜ d (1)<br />

02 , and by setting to zero the<br />

fourth entry of the right-hand side vector.<br />

In the Chebyshev case, relation (11.2.6) is more su<strong>it</strong>able for implementation since<br />

<strong>it</strong> is difficult to obtain the exact expression of γk in (11.2.8), or the counterpart of<br />

formula (11.2.12). As an alternative, we can use the cond<strong>it</strong>ion<br />

σ2<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!