11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Results in Approximation Theory 113<br />

The rate of convergence in (6.5.1) is measured by the degree of smoothness of the<br />

function f. If f fulfills certain regular<strong>it</strong>y requirements, we can analytically express the<br />

error between the integral and the quadrature. The proof of the following theorem does<br />

not present difficulties and is given for instance in todd(1963).<br />

Theorem 6.5.4 - Let n ≥ 1 and f ∈ C2n ( Ī). Let us define<br />

(6.5.3)<br />

<br />

En(f) := fw dx −<br />

n<br />

I<br />

j=1<br />

f(ξ (n)<br />

j ) w (n)<br />

j .<br />

Then we can find ξ ∈ I such that<br />

<br />

2<br />

(6.5.4) (Jacobi) En(f) =<br />

2n+α+β+1 n! Γ(n + α + 1) Γ(n + β + 1)<br />

(2n)! Γ(2n + α + β + 1)<br />

× Γ(n + α + β + 1)<br />

<br />

Γ(2n + α + β + 2)<br />

(6.5.5) (Legendre) En(f) =<br />

(6.5.6) (Chebyshev) En(f) =<br />

(6.5.7) (Laguerre) En(f) =<br />

d2nf (ξ), α > −1, β > −1,<br />

dx2n 2 2n+1 [n!] 4<br />

(2n + 1) [(2n)!] 3<br />

π<br />

2 2n−1 (2n)!<br />

n! Γ(n + α + 1)<br />

(2n)!<br />

(6.5.8) (Herm<strong>it</strong>e) En(f) = n! √ π<br />

2 n (2n)!<br />

d2nf (ξ),<br />

dx2n d2nf (ξ),<br />

dx2n d2nf (ξ), α > −1,<br />

dx2n d2nf (ξ).<br />

dx2n Concerning Gauss-Lobatto formulas, we can recover a convergence result for f ∈<br />

C0 ( Ī), I =] − 1,1[, w<strong>it</strong>h the same proof given for theorem 6.5.1. A more general<br />

theorem, based on weaker assumptions on f, also holds in the Jacobi case:<br />

Theorem 6.5.5 - Let f : Ī → R, such that fw is Riemann integrable. Then we have<br />

(6.5.9)<br />

n<br />

lim f(η<br />

n→+∞<br />

(n)<br />

j ) ˜w (n)<br />

j<br />

<br />

= lim<br />

n→+∞<br />

<br />

Ĩw,nf w dx = fw dx.<br />

j=0<br />

I<br />

I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!