11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

An Example in Two Dimensions 285<br />

(13.2.5) Kn :=<br />

⎡<br />

1 0 0 0 0 0 0 0<br />

⎤<br />

0<br />

⎢0<br />

⎢<br />

⎢0<br />

⎢<br />

⎢0<br />

⎢<br />

⎢0<br />

⎢<br />

⎢0<br />

⎢<br />

⎢0<br />

⎣<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0 ⎥<br />

0 ⎥<br />

0 ⎥<br />

0 ⎥.<br />

⎥<br />

0 ⎥<br />

0 ⎥<br />

⎦<br />

0<br />

0 0 0 0 0 0 0 0 1<br />

Actually, for any 1 ≤ i ≤ n −1 and 1 ≤ j ≤ n −1, the transformation associated w<strong>it</strong>h<br />

Kn maps the point (η (n)<br />

i ,η (n)<br />

j ) into the point (η (n)<br />

j ,η (n)<br />

i ). Therefore, the matrix-vector<br />

multiplication ¯pn → An¯pn is equivalent to performing n − 1 second-order partial<br />

derivatives w<strong>it</strong>h respect to the variable x, and the multiplication ¯pn → KnAnKn¯pn<br />

corresponds to n − 1 second-order partial derivatives w<strong>it</strong>h respect to the variable y.<br />

The sum of the two contributions gives a discretization of the Laplace operator.<br />

We observe that, in the construction of the matrix D ⋆ n, we implic<strong>it</strong>ly assumed that the<br />

unknown polynomial pn vanishes on ∂Ω. This cond<strong>it</strong>ion is obtained by eliminating<br />

all the entries corresponding to the boundary nodes. The same trick was applied in<br />

(7.4.11) for n = 3 in the one-dimensional case.<br />

A theoretical analysis of the convergence of pn to U as n → +∞ can be developed.<br />

We outline the proof in the Legendre case (α = β = 0). We start by recasting (13.1.1) in<br />

a weak form (see section 9.3), which is obtained by multiplying the differential equation<br />

by a test function φ such that φ ≡ 0 on ∂Ω, and integrating on Ω. W<strong>it</strong>h the help of<br />

Green’s formula one gets<br />

(13.2.6)<br />

<br />

Ω<br />

<br />

∂U ∂φ<br />

∂x ∂x<br />

+ ∂U<br />

∂y<br />

<br />

∂φ<br />

dxdy =<br />

∂y<br />

<br />

Ω<br />

fφ dxdy =: F(φ).<br />

Similarly, problem (13.2.2) can be formulated in a variational setting. In fact, by formula<br />

(3.5.1) w<strong>it</strong>h w ≡ 1, integration by parts yields

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!