21.11.2013 Views

pdf, 12 MiB - Infoscience - EPFL

pdf, 12 MiB - Infoscience - EPFL

pdf, 12 MiB - Infoscience - EPFL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 7 - Establishing an empirical formula<br />

h s,max h s,max /h m tan(β max )<br />

1 2 <strong>12</strong> 1 2 <strong>12</strong> 1 2 <strong>12</strong><br />

V*/V 0.043 0.058 0.055 0.207 0.087 0.210 0.296 0.078 0.153<br />

Fr* 0.061 0.019 0.050 0.060 0.035 0.050 0.031 0.042 0.040<br />

Fr d 0.263 0.152 0.230 0.006 0.031 0.010 0.001 0.262 0.137<br />

Fr 0.013 0.000 0.016 0.210 0.044 0.231 0.089 0.016 0.036<br />

Sigma 0.130 0.020 0.079 0.087 0.009 0.056 0.086 0.036 0.005<br />

d/h m 0.028 0.055 0.028 0.251 0.053 0.275 0.205 0.026 0.064<br />

Re* 0.775 0.734 0.822 0.348 0.140 0.338 0.153 0.163 0.165<br />

Re 0.798 0.759 0.832 0.477 0.201 0.475 0.232 0.188 0.204<br />

V*R h /sqrt(g*B^3) 0.8<strong>12</strong> 0.751 0.839 0.475 0.210 0.477 0.229 0.204 0.217<br />

V*R h /sqrt(g*h m^3) 0.814 0.785 0.863 0.452 0.175 0.445 0.2<strong>12</strong> 0.151 0.168<br />

S e,in 0.031 0.475 0.251 0.169 0.571 0.464 0.001 0.404 0.175<br />

S e,mr 0.057 0.553 0.301 0.<strong>12</strong>8 0.673 0.564 0.002 0.303 0.<strong>12</strong>5<br />

S e,all 0.079 0.161 0.099 0.5<strong>12</strong> 0.170 0.518 0.366 0.109 0.186<br />

S e,bend 0.004 0.027 0.005 0.268 0.071 0.285 0.186 0.0<strong>12</strong> 0.041<br />

Rc/B 0.529 0.442 0.564 0.279 0.227 0.277 0.253 0.473 0.470<br />

h m /B 0.662 0.532 0.628 0.486 0.262 0.521 0.228 0.297 0.295<br />

r/B 0.502 0.416 0.535 0.263 0.218 0.262 0.240 0.460 0.455<br />

V^2/g/r 0.040 0.011 0.026 0.019 0.026 0.016 0.054 0.148 0.153<br />

R c *h m /B^2 0.699 0.586 0.696 0.441 0.261 0.458 0.256 0.376 0.377<br />

(R c +h m )/B 0.537 0.448 0.571 0.287 0.230 0.285 0.255 0.472 0.469<br />

V * 0.807 0.735 0.855 0.329 0.130 0.321 0.150 0.119 0.<strong>12</strong>6<br />

V*R h * 0.798 0.759 0.832 0.477 0.201 0.475 0.232 0.188 0.204<br />

Table 7.2: Table of correlations R 2 for the tests without macro-roughness<br />

Re*: computed with d 90 , S e,in and S e,mr are computed without Peter’s data.<br />

1: first scour hole, 2: second scour hole, <strong>12</strong>: maximum of the two scour holes<br />

Correlations over 0.5 are in bold characters, correlations below 0.4 on a grey background.<br />

* parameter with a dimension<br />

It can easily be seen that the frequently used parameters V∗ ⁄ V , Fr d have almost no influence on<br />

the scour process. The particle Froude number seems to have a little influence on the absolute<br />

scour depth h max and it may be useful to introduce it in combination with other parameters in a<br />

scour formula.<br />

The Reynolds number seems to be an important parameter; but since there is no plausible reason<br />

to consider the influence of the viscosity in the scour process, this phenomenon is an expression<br />

of the correlation between the velocity and the scour depth. This fact is confirmed if we consider<br />

the correlations between the velocity V , the product of the velocity with the hydraulic radius<br />

V ⋅ R h with the absolute and relative maximum scour depth. To replace the Reynolds number, a<br />

new dimensionless ratio V⋅ R h ⁄ g⋅<br />

B 3 is proposed. It has about the same correlation as the<br />

Reynolds number. Replacing B by in this ratio would reduce the correlation.<br />

h m<br />

page 152 / November 9, 2002<br />

Wall roughness effects on flow and scouring

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!