21.11.2013 Views

pdf, 12 MiB - Infoscience - EPFL

pdf, 12 MiB - Infoscience - EPFL

pdf, 12 MiB - Infoscience - EPFL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3 - Theoretical considerations<br />

a) Wall influence<br />

The wall influence is taken into account based on EINSTEIN (1934) and the friction coefficient of<br />

the bed can be computed according to Table 3.3 for the straight inlet reach.<br />

Measured data<br />

Calculated data for subareas<br />

Target cells Shear<br />

A 0<br />

A w<br />

A tot based on subsections avg stress<br />

Test Q S e h A U P 0 f 0 R h0 P w d w,90 f w R hw f m R h0 /f 0 R hw /f w R hm /f m R hm /f m τ 0<br />

- m3/s % m m2 m/s m - m m mm - m - m m m m N/m2<br />

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (<strong>12</strong>) (13) (14) (15) (16) (17) (18) (19)<br />

B01b 0.15 0.82% 0.15 0.15 0.98 1.00 0.10 0.15 0.15 0.1 0.02 0.03 0.08 1.48 1.48 1.48 1.48 11.8<br />

B01c 0.18 0.96% 0.17 0.17 1.07 1.00 0.11 0.16 0.17 0.1 0.02 0.03 0.08 1.51 1.51 1.51 1.51 15.2<br />

B01d 0.21 0.82% 0.19 0.19 1.09 1.00 0.10 0.18 0.19 0.1 0.02 0.03 0.08 1.84 1.84 1.84 1.84 14.6<br />

C01b 0.15 0.97% 0.15 0.15 1.00 1.00 0.11 0.14 0.15 0.1 0.02 0.03 0.09 1.32 1.32 1.32 1.32 13.6<br />

C01c 0.18 0.90% 0.17 0.17 1.05 1.00 0.10 0.16 0.17 0.1 0.02 0.03 0.08 1.57 1.57 1.57 1.57 14.3<br />

C01d 0.21 0.94% 0.19 0.19 1.11 1.00 0.11 0.18 0.19 0.1 0.02 0.03 0.08 1.68 1.68 1.68 1.68 16.4<br />

D01b 0.15 0.59% 0.16 0.16 0.93 1.00 0.08 0.15 0.16 0.1 0.02 0.03 0.07 1.84 1.84 1.84 1.84 8.8<br />

D01c 0.18 0.61% 0.19 0.19 0.99 1.00 0.08 0.17 0.19 0.1 0.02 0.04 0.07 2.06 2.06 2.06 2.06 10.2<br />

D01d 0.21 0.76% 0.20 0.20 1.08 1.00 0.09 0.18 0.20 0.1 0.02 0.04 0.07 1.94 1.94 1.94 1.94 13.5<br />

Table 3.3: Computation of the friction factor solving simultaneously for all hydraulic radii (Tests without macroroughness)<br />

The discharge Q, the energy slope S e<br />

as well as the characteristic wall roughness size d w,<br />

90<br />

are<br />

supposed to be known. The wall roughness was chosen d w, 90 = 0.1 mm to obtain the roughness<br />

of the plastic walls. The cross-section A = B⋅<br />

h, the velocity V = Q⁄<br />

A, and the wetted<br />

perimeters = B , P w<br />

= h were computed first.<br />

P 0<br />

GESSLER proposed to compute the wall friction with KEULEGAN’S (1938) relationship and to<br />

admit a hydraulically smooth bed. Since the walls in the used channel are much smoother than the<br />

bed, the bed friction factor was determined in the present study with KEULEGAN’S (1938) relationship:<br />

0.0251<br />

f 0<br />

= 2.21 + 2.03 ⋅ log --------------<br />

⎝<br />

⎛ ⎠<br />

⎞<br />

S e<br />

–2<br />

(3.26)<br />

The friction factor for smooth walls is computed with:<br />

--------<br />

1<br />

2.51<br />

= – 2 ⋅ log -----------------------<br />

⎝<br />

⎛ Re w<br />

⋅ f ⎠<br />

⎞<br />

w<br />

f w<br />

(3.27)<br />

For rough walls or banks the following friction factor can be used:<br />

f w<br />

= 2.21 + 2.03 ⋅ log ------------<br />

⎝<br />

⎛ ⎠<br />

⎞<br />

(3.28)<br />

The average bed friction based on the previously computed bed and wall friction can be obtained<br />

with:<br />

R w<br />

d w,<br />

90<br />

P<br />

f 0<br />

⋅ f 0<br />

+ 2 ⋅P w<br />

⋅ f w<br />

m = --------------------------------------------<br />

P 0<br />

+ 2 ⋅ P w<br />

–2<br />

(3.29)<br />

page 32 / November 9, 2002<br />

Wall roughness effects on flow and scouring

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!