13.07.2015 Views

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

110 Sharp adaptive estimation in sup-norm for d-dimensional Hölder classesThe relations (6.45) and (6.47) and Proposition 6.3 imply that{sup(E f ‖ ˆf γ,2 − f‖ 2p ∞ψn−2p (β)I { ˆβani =γ}f∈Σ(β,L)}) 1/2is bounded above by a positive constant for n large enough. Now to have (6.43), it isenough to prove thatlim sup P f[C 1,n ∩ { ˆβ]ani = γ} = 0. (6.48)n→∞ f∈Σ(β,L)Using the relations (6.44) and (6.46), and following the proof of (6.22) from (6.34) to(6.36), we deduce (6.48), which finishes the proof.6.7 Proof of Theorem 6.4•Proof of (6.8)By Proposition 6.3, we havelim supn→∞supf∈Σ(β,L)Then to have (6.8), it is enough to prove thatlimsupn→∞ f∈Σ(β,L){E f ‖ ˆf}β,1 − f‖ p ∞ψ −p (β) ≤ 1E f{‖ ˆf γ,3 − f‖ p ∞ψ −pn (β)I { ˜fani2 = ˆf γ,3 }{The event ˜fani2 = ˆf} {γ,3 satisfies ˜fani2 = ˆf}γ,3 ⊂ A 3,n ∩ A 4,n , whereA 3,n =The event A 3,n satisfies the lemma:{‖ ˆf β∗γ,1 − ˆf}γ,3 ‖ ∞ > η 3 (γ) ,{A 4,n = ‖ ˆf β∗γ,1 − ˆf β,1 ‖ ∞ < ψ }n(γ)λ 3 (γ)(1 + ρ n ) ,2γ + 1Lemma 6.9. We have for n large enoughsup P f [A 3,n ] ≤ D 14 (log n) − 1 −2γ+1 n p(β−γ)(2β+1)(2γ+1) .f∈Σ(β,L)n}= 0 (6.49)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!