13.07.2015 Views

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.4. Lower bound 49With these preliminaries, we can now prove inequality (3.7). For any f ∈ Σ(β, L) andfor any estimator ̂f n , using the monotonicity of w and the Markov inequality, we obtainthat(E f[w ψn −1 ‖ ̂f)][n − f‖ ∞ ≥w(C 0 (1 − ε))P f ψn −1 ‖ ̂f]n − f‖ ∞ ≥ C 0 (1 − ε) .Since Σ ′ ⊂ Σ(β, L), it is enough to prove that lim n→∞ Λ n = 1, where[Λ n = inf sup P f ψn −1 ‖ ̂f]n − f‖ ∞ ≥ C 0 (1 − ε) .̂f n f∈Σ ′We have max j=1,...,M | ̂f n (a j ) − f(a j )| ≤ ‖ ̂f n − f‖ ∞ . Setting ˆθ j = ̂f n (a j )C 0 ψ n and usingthe fact that f(a j , θ) = C 0 ψ n θ j for θ ∈ [−1, 1] M , we see thatwhere C n =Λ n ≥ inf sup P θ (C n ),ˆθ∈R M θ∈[−1,1] M{}max j=1,...,M |ˆθ j − θ j | ≥ 1 − ε and ˆθ = (ˆθ 1 , . . . , ˆθ M ) ∈ R Mwith respect to y = {Y t , t ∈ [0, 1] d }. We have∫Λ n ≥ infP θ (C n )π(dθ),ˆθ∈R M {−(1−ε),1−ε} Mis measurablewhere π is the prior distribution on θ, π(dθ) = ∏ Mj=1 π j(dθ j ), where π j is the Bernoullidistribution on {−(1 − ε), 1 − ε} that assigns probability 1/2 to −(1 − ε) and to (1 − ε).Since P θ is absolutely continuous with respect to P 0 (see Proposition 3.3), we have∫Λ n ≥ infˆθ∈R M∫= infˆθ∈R M( )dP θE 0 I Cn π(dθ)dP 0( M)∏ ϕ vn (y j − θ j )E 0 I Cnπ(dθ).ϕ vn (y j )By the Fubini and Fatou theorems, we can write∫( ∫ M)1 ∏Λ n ≥1 − sup ∏ Mˆθ∈R M j=1 ϕ I {|θj −ˆθv n(y j )j |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!