13.07.2015 Views

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

THÈSE DE DOCTORAT DE L'UNIVERSITÉ PARIS 6 Spécialité ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

118 Sharp adaptive estimation in sup-norm for d-dimensional Hölder classeswhere κ n is of order ψ n (β)/η 2 (β ′ ),andUsing Proposition 6.2, sinceP 3 (n) = P f [‖Z β∗β ′ ,2‖ ∞ > ψ n ((β ′ + β)/2)(1 + κ n )] ,P 4 (n) = P f[‖Z β ′ ,2‖ ∞ > η 2 (β ′ ) (1 + κ n )η 2 2(β ′ ) ∏ di=1 h i,2(β ′ )2‖K β ′‖ 2 2σ 2 =we obtain that for n large enough(1 − ψ n( β′ +βη 2 (β ′ )2)()12β ′ + 1 + pµ(β′ ) log n,P 4 (n) ≤ D 11 (log n) − 12β ′ +1 exp {− (pµ(β ′ )) log n} . (6.56)Using Lemma 6.4, it can be proved that P 3 (n) is negligible with respect to P 4 (n) asn → ∞. The relation (6.56) implies the lemma.Proof of Lemma 6.10)].Let f ∈ Σ(γ, L). By Lemma 6.3, we have thatThenwhereand‖b β∗γ,1 (·, f) − b β,1 (·, f)‖ ∞ ≤ ψ n(γ)λ 3 (γ).2γ + 1[P f ‖ ˆf β∗γ,1 − ˆf β,1 ‖ ∞ ≥ ψ ]n(γ)λ 3 (γ)(1 + ρ n ) ≤ P 5 (n) + P 6 (n),2γ + 1[P 5 (n) = P f ‖Z β∗γ,1 ‖ ∞ > ψ ]n(γ)λ 3 (γ)ρ n,2(2γ + 1)[P 6 (n) = P f ‖Z β,1 ‖ ∞ > ψ ]n(γ)λ 3 (γ)ρ n.2(2γ + 1)Using Proposition 6.2, since ρ n = ψ n((β+γ)/2)ψ n, we obtain that(γ){} ⎧√ ⎫P 6 (n) ≤ D 1˜h 1 (β) exp − λ2 3(γ)ψn((β 2 + γ)/2)n˜h 1 (β)⎨exp8‖K β ‖ 2 2σ 2 (2γ + 1) 2 ⎩ −D 2λ 3 (γ)ψ n ((β + γ)/2) n˜h 1 (β) ⎬√2(2γ + 1) log ˜h ⎭ .1 (β)(6.57)Using Lemma 6.4, we have that P 5 (n) satisfies the same inequality as (6.57) but withdifferent constants D 1 and D 2 . Now, since β > γ, we havewith D 17 ∈ R, which includes the lemma.λ 2 3(γ)ψ 2 n((β + γ)/2)n˜h 1 (β)8‖K β ‖ 2 2σ 2 (2γ + 1) 2 = D 16 (log n) D 17n D 18,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!