17.12.2012 Views

crc press - E-Lib FK UWKS

crc press - E-Lib FK UWKS

crc press - E-Lib FK UWKS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

400 Cell-Penetrating Peptides: Processes and Applications<br />

AntpHD mutant behavior, 25<br />

penetratin-1 peptide, 25–26<br />

HPLC, quantification by, 269–270<br />

3 H radiolabeling, quantification by, 266–267<br />

h-region peptides, 117–122, see also Membrane<br />

translocating (MTS) peptides<br />

HSP70 proteins, 305<br />

Hydrophobicity<br />

atomic surface, 191–193<br />

molecular hydrophobicity potential (MHP),<br />

199–202, 206–208<br />

Hydrophobic membrane translocating sequence<br />

peptides, 115–140, see also<br />

Membrane translocating sequence<br />

(MTS) peptides<br />

Hydrophobic peptides, structure prediction<br />

modeling, 202–204<br />

I<br />

125 I radiolabeling, quantification by, 266–267<br />

Immunodetection, quantification by, 270<br />

Incubation, of cells with CPPs, 279–280<br />

Inhibition zone assay, 385<br />

Integrin β 3 h-region, 122<br />

Interfacial electrostatics, 229–231<br />

Internalization, 287–293, see also Uptake; Uptake<br />

kinetics<br />

comparisons of CPPs and, 290–291<br />

penetratins, 26–30<br />

blood–brain barrier and, 39–40<br />

direct perfusion in CNS, 39<br />

immune system, 39<br />

in vivo with penatratin-derived vectors,<br />

39–40<br />

peptide–lipid interactions, 28–29<br />

peptides in blood vessels, 39<br />

proposed models, 29–30<br />

structural parameters and translocation,<br />

26–28<br />

vesicular, 177<br />

via receptor, 177–179<br />

Interphase region, 229–231<br />

Interpretative criteria, 239–240<br />

Ion pump uptake assays, 252<br />

K<br />

KALA peptide, 356–357<br />

Kaposi fibroblast growth factor (kFGF, FGF-4),<br />

117–118, 120–122, 131<br />

Kar2p (BiP) protein, 305<br />

KF<strong>FK</strong>F<strong>FK</strong>F<strong>FK</strong> peptide, 357<br />

Kinetics, uptake, 277–293, see also Uptake<br />

kinetics<br />

L<br />

Lactate dehydrogenase leakage assay, 249<br />

Large unicellular vesicles (LUVs), 227<br />

Leakage, as mechanism of antimicrobial action,<br />

383–384<br />

Leakage assays, 283<br />

Lhs1p protein, 305<br />

Lipid perturbation, 193–194<br />

Lipid vesicles, determination of reduction rate<br />

constants, 271–272<br />

Liposomes, 226–228<br />

Loligomers, in nucleic acid delivery, 357–358<br />

Lymphocytes, transduction into, 370<br />

M<br />

Magainin, 236–238, 240<br />

Magnetic cell labeling with Tat protein, 336–343<br />

CLIO-Tat internalization into lymphocyte and<br />

CD34+ subsets, 336–337<br />

internalization of paramagnetic chelates,<br />

342–343<br />

internalization of superparamagnetic<br />

nanoparticles, 336<br />

label distribution in dividing cell populations,<br />

337–338<br />

results in vitro, 338–339<br />

results in vivo, 339–340<br />

toxicity/nontoxicity, 338<br />

in vivo MR imaging of Tat-labeled cells,<br />

340–342<br />

Maltoporin, 204–206<br />

MAP and MAP analogues, uptake kinetics, 290<br />

MAPs, 71–92<br />

experimental methods, 87–90<br />

cell culture, 87<br />

confocal laser scanning microscopy, 88–90<br />

HPLC analysis, 88<br />

uptake experiments, 87–88<br />

introducing history, 72–73<br />

toxicity, 252–253<br />

uptake<br />

mammalian cell experiments, 84–87<br />

mechanistic aspects, 73–76<br />

structural requirements, 76–84<br />

Mastoparan, 58, 59, see also Transportan<br />

Mastoparan X, 236–238, 240<br />

Mechanisms and interactions, see also specific<br />

topics<br />

backbone and side chain variations, 141–160<br />

biophysical studies, 223–244<br />

membrane interactions, 163–183<br />

quantification of CPPs and cargoes, 263–275<br />

signal peptides, 295–324

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!