17.12.2012 Views

crc press - E-Lib FK UWKS

crc press - E-Lib FK UWKS

crc press - E-Lib FK UWKS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Index 405<br />

lipid perturbation (second restraint),<br />

193–194<br />

molecular hydrophobicity potential<br />

(MHP), 199–202<br />

Monte Carlo procedure, 198<br />

Pex2Dstat files, 198–199<br />

procedure, 197–198<br />

principles and background, 188–190<br />

results, 202–215<br />

charged bilayer model, 210–215<br />

efficiency of Monte Carlo method,<br />

202–206<br />

hydrophobic peptides, 202–204<br />

membrane proteins, 204–206<br />

penetratin, 206–207<br />

uncharged membrane model, 207–210<br />

Surface potential, 230<br />

T<br />

Targeting domains, for translocating peptides,<br />

124–127<br />

Tat<br />

in nucleic acid delivery, 351–354<br />

side effects, 256<br />

Toxicity, 253<br />

Tat-β-galactosidase, 372<br />

Tat-Cre recombinase, 370–371<br />

Tat-dependent bacterial protein secretion<br />

pathways, 301–302<br />

Tat-derived CPPs, 3–21<br />

applications, 7–13<br />

examples of vectorization, 17<br />

principles and background, 3–4<br />

uptake investigations and methods, 4–7<br />

uptake mechanism, 13–16<br />

cellular aspects, 16<br />

of full-length Tat protein, 13<br />

molecular aspects, 14–15<br />

short HIV-Tat peptide, 13–14<br />

Tat-E1A fusion protein, transduction into<br />

lymphocytes, 370<br />

Tat fusion proteins, cloning and purification,<br />

368–369<br />

Tat-GFP protein, 372<br />

Tat protein, magnetic cell labeling with, 336–343<br />

CLIO-Tat internalization into lymphocyte and<br />

CD34+ subsets, 336–337<br />

internalization of paramagnetic chelates,<br />

342–343<br />

internalization of superparamagnetic<br />

nanoparticles, 336<br />

label distribution in dividing cell populations,<br />

337–338<br />

results in vitro, 338–339<br />

results in vivo, 339–340<br />

toxicity/nontoxicity, 338<br />

in vivo MR imaging of Tat-labeled cells,<br />

340–342<br />

Tat PTD fusion zymogen, 372–373<br />

Tat/Tat analogues, uptake kinetics, 289–290<br />

Thermus aquaticus, 300–301<br />

Thiazolidine ring formation protocol, 126–127<br />

Toxicity, 179–180, 245–261, see also Side effects<br />

in vitro findings, 252–255<br />

arginine-rich peptides, 254<br />

conclusions, 254<br />

model amphipathic peptides (MAPs),<br />

252–253<br />

penetratin, 253–254<br />

Tat, 253<br />

transportan, 254<br />

in vitro methods, 246–252<br />

cell membrane permeability, 247–250<br />

cytoplasmic leakage assays, 249–250<br />

dye exclusion techniques, 248–249<br />

cell viability assays, 250–252<br />

enzymatic, 251<br />

ion pump, 252<br />

uptake, 251–252<br />

in vivo, 256–258<br />

Translocating chain-associated membrane<br />

(TRAM) protein, 304<br />

Translocation, possible mechanisms of, 240–241<br />

Translocons, 297, 304<br />

Transportan, 53–70, 128, 224–225<br />

cell penetration, 55–57<br />

discovery, 53–55<br />

experimental methods, 66–68<br />

cargo-CPP conjugation systems, 66<br />

conjugation to proteins, 66–67<br />

disulfide heterodimers, 66<br />

125 I-radiolabeling, quantification by, 267<br />

membrane-associated fraction, 282–283<br />

in nucleic acid delivery, 354<br />

properties, 57–58<br />

sequences and uptake parameters, 54<br />

side effects, 255–256<br />

structural organization, 67–69<br />

structure–activity relationships, 58–59<br />

toxicity, 254<br />

uptake kinetics, 285–287<br />

as vector, 59–66<br />

for peptides, 59–60<br />

for PNA, 60–61<br />

for proteins, 61–66<br />

Transportan analogues, uptake kinetics, 287–289<br />

Transverse relaxation optimized (TROSY)<br />

spectroscopy, 235<br />

Trojan horse strategies, 372–373

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!