27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.3 Solutions for the squa<strong>re</strong> barrier<br />

PhiGrad[x_, t_, w_, k_, opts___Rule] :=<br />

If[x < 0 || t < 0 || x == 0 && t == 0, 0,<br />

PhiGradEvan[x,t,w,k,opts] + PhiGradTrans[x,t,w,k,opts]];<br />

End[]<br />

SetAttributes[PhiTrans, ReadProtected]<br />

SetAttributes[PhiGradTrans, ReadProtected]<br />

SetAttributes[PhiEvan, ReadProtected]<br />

SetAttributes[PhiGradEvan, ReadProtected]<br />

SetAttributes[PhiRef, ReadProtected]<br />

SetAttributes[PhiInc, ReadProtected]<br />

SetAttributes[Phi, ReadProtected]<br />

SetAttributes[PhiGrad, ReadProtected]<br />

(*<br />

Protect[PhiTrans, PhiGradTrans, PhiEvan, PhiGradEvan]<br />

Protect[PhiRef, PhiInc, Phi, PhiGrad]<br />

*)<br />

EndPackage[]<br />

A.3 Solutions for the squa<strong>re</strong> barrier<br />

The package Gauss was written to compute the solutions of the Schrod<strong>in</strong>ger equation for the<br />

tunnell<strong>in</strong>g of an electron through a squa<strong>re</strong> barrier (section 4.6). The <strong>in</strong>itial shape of the wave<br />

packet is Gaussian. The details of the implementation a<strong>re</strong> not t<strong>re</strong>ated <strong>in</strong> p<strong>re</strong>vious chapters,<br />

however the structu<strong>re</strong> is identical to that of Tunnel.<br />

(* Copyright: Copyright 1997, Institute of Computertechnology, *)<br />

(* Vienna University of Technology *)<br />

(*:Version: Mathematica 2.2.3 *)<br />

(*:Title: Gauss *)<br />

(*:Author: Thilo Sauter *)<br />

(*:Keywords: Tunnel Effect *)<br />

(*:Requi<strong>re</strong>ments: None. *)<br />

(*:Warn<strong>in</strong>gs: None so far *)<br />

(*:Packages: OscInt *)<br />

(*:Summary: This package computes the solutions of the time-dependent<br />

Schroed<strong>in</strong>ger equation for an <strong>in</strong>itially Gaussian wave packet<br />

tunnell<strong>in</strong>g through a squa<strong>re</strong> barrier. It is based on the same<br />

structu<strong>re</strong> as the package Tunnel. The wave <strong>in</strong>tegrals a<strong>re</strong><br />

computed by truncation of the <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>tegration range.<br />

*)<br />

(*:History: 31-10-1997 written<br />

*)<br />

Beg<strong>in</strong>Package["Gauss`", "OscInt`"]<br />

Phi::usage =<br />

"Phi[x,t,w,k,n,l,(opts)] <strong>re</strong>turns the wave function of an <strong>in</strong>itially Gaussian<br />

wave packet at a given coord<strong>in</strong>ate <strong>in</strong> space and time. The squa<strong>re</strong> barrier is<br />

supposed to span the <strong>in</strong>terval x=0 to x=l. Depend<strong>in</strong>g on the spatial<br />

coord<strong>in</strong>ate the function either <strong>re</strong>turns the sum of <strong>in</strong>cident and <strong>re</strong>flected wave,<br />

the portion of the wave <strong>in</strong>side the tunnel, or the transmitted wave. The parameter<br />

w is the ratio of the carrier f<strong>re</strong>quency of the <strong>in</strong>cident wave and the<br />

characteristic f<strong>re</strong>quency of the barrier. For tunnell<strong>in</strong>g, 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!