27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.9 A Gaussian pulse <strong>in</strong> plasma<br />

Like always, we <strong>in</strong>troduce a normalised <strong>in</strong>tegration variable<br />

and normalised parameters<br />

= !<br />

!p<br />

T = !pt ; T0=!pt0; =!p ; X= !px<br />

c<br />

; = !0<br />

!p<br />

(3.101)<br />

: (3.102)<br />

With these new variables, we can write the voltage at any position along the l<strong>in</strong>e as<br />

U(X; T )=U0 2 p<br />

Z 1<br />

,1<br />

( , )<br />

, 2 e<br />

2<br />

e ,jT0( , ) e j( T,K( )X) d ; (3.103)<br />

with the normalised dispersion <strong>re</strong>lation K( )= p 2 ,1. As for the sign of the squa<strong>re</strong> root,<br />

we must keep <strong>in</strong> m<strong>in</strong>d that s<strong>in</strong>ce we <strong>re</strong>gard only right-go<strong>in</strong>g waves, the negative branch applies<br />

to negative f<strong>re</strong>quencies. In the evanescent <strong>re</strong>gion, we must also choose the negative solution<br />

of the root <strong>in</strong> order to obta<strong>in</strong> attenuation along the l<strong>in</strong>e. So <strong>in</strong> the th<strong>re</strong>e parts of the range of<br />

<strong>in</strong>tegration, the dispersion <strong>re</strong>lation is given by<br />

K( )=<br />

8<br />

><<br />

>:<br />

, p 2 ,1 if 1<br />

: (3.104)<br />

Remark (Transfer function of the plasma) Look<strong>in</strong>g at the wave <strong>in</strong>tegral from a<br />

system theo<strong>re</strong>tical po<strong>in</strong>t of view, we obta<strong>in</strong> still another <strong>re</strong>ason<strong>in</strong>g for the choice of the<br />

sign of the dispersion <strong>re</strong>lation. We can th<strong>in</strong>k of the wave <strong>in</strong>tegral (3.99) as the <strong>re</strong>sponse<br />

of a system to a signal u(0;t),<br />

u(x; t) =<br />

Z 1<br />

whe<strong>re</strong> the transfer function of the system is<br />

A(!)H(!) e<br />

,1<br />

j!t d! ; (3.105)<br />

H(!) =e ,jk(!)x : (3.106)<br />

It is well known that a physically mean<strong>in</strong>gful system must give a pu<strong>re</strong>ly <strong>re</strong>al <strong>re</strong>sponse<br />

when excited with a pu<strong>re</strong>ly <strong>re</strong>al signal. Accord<strong>in</strong>g to the basic properties of the Fourier<br />

transform, this can only be guaranteed if the <strong>re</strong>al and the imag<strong>in</strong>ary parts of the transfer<br />

function a<strong>re</strong> even and odd functions <strong>in</strong> !, <strong>re</strong>spectively. It is easy to see that the de nition<br />

of the dispersion <strong>re</strong>lation given above satis es these <strong>re</strong>qui<strong>re</strong>ments. With<strong>in</strong> the pass<br />

band, the imag<strong>in</strong>ary part of H(!) is essentially the s<strong>in</strong>e of an odd argument function<br />

and thus also odd, whe<strong>re</strong>as the <strong>re</strong>al part is the cos<strong>in</strong>e of an odd function and thus even.<br />

In the evanescent <strong>re</strong>gion, the imag<strong>in</strong>ary part of the transfer function vanishes, and the<br />

exponentially decay<strong>in</strong>g <strong>re</strong>al part <strong>re</strong>ma<strong>in</strong>s even.<br />

The cur<strong>re</strong>nt <strong>in</strong> the transmission l<strong>in</strong>e could be calculated by <strong>in</strong>sert<strong>in</strong>g the voltage <strong>in</strong>to the<br />

di e<strong>re</strong>ntial equations (3.75) and solv<strong>in</strong>g for I, which gives<br />

i(x; t) =L 0<br />

Z 1<br />

A(!)<br />

,1<br />

k(!)<br />

! ej(!t,k(!)x) d! : (3.107)<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!