27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.6 Inhomogeneous transmission l<strong>in</strong>e<br />

3<strong>Wave</strong> propagation <strong>in</strong> electromagnetic transmission l<strong>in</strong>es<br />

So far, the transmission l<strong>in</strong>es we <strong>in</strong>vestigated we<strong>re</strong> homogeneous, so that their parameters did<br />

not depend on the position along the l<strong>in</strong>e. We now extend our analysis to <strong>in</strong>homogeneous<br />

transmission l<strong>in</strong>es and brie y sketch the t<strong>re</strong>atment of a so-called exponential l<strong>in</strong>e. Such<br />

transmission l<strong>in</strong>es a<strong>re</strong> not only of academic <strong>in</strong>te<strong>re</strong>st | they have actually been used <strong>in</strong> the early<br />

days of <strong>in</strong>tegrated circuit design for impedance transformation [95]. The equivalent circuit<br />

of g. 3.1 and the <strong>re</strong>spective di e<strong>re</strong>ntial equations (3.2) a<strong>re</strong> still valid, but the distributed<br />

<strong>re</strong>actance and susceptance a<strong>re</strong> now position-dependent,<br />

X 0 = !L0 0 e x ; B 0 = !C0 0 e , x ; c =<br />

1<br />

p<br />

L0 0 : (3.56)<br />

0<br />

C0<br />

Insert<strong>in</strong>g solutions of the form (3.3) <strong>in</strong>to the di e<strong>re</strong>ntial equations yields a propagation constant<br />

0<br />

k = @j<br />

2<br />

s<br />

2!<br />

c<br />

1<br />

2<br />

, 1A<br />

(3.57)<br />

and a complex, position-dependent wave impedance<br />

Z 0 =<br />

0<br />

@,j 0 +<br />

2!C0<br />

With the abb<strong>re</strong>viations and normalisations<br />

= 2!<br />

c<br />

s L0 0<br />

C0 0 , 2!C0 0<br />

1<br />

2<br />

A e x : (3.58)<br />

; X = x ; L = l ; (3.59)<br />

the general solution <strong>in</strong> the pass band consists of a right- and left-go<strong>in</strong>g wave for the voltage<br />

and a cor<strong>re</strong>spond<strong>in</strong>g cur<strong>re</strong>nt<br />

U = K e X 2 (1,j p 2 ,1)+j!t +(U0 ,K)e X 2(1+j p 2 ,1)+j!t<br />

I = j2!C0 0 K=<br />

1+j p e<br />

2 ,1 ,X 2(1+j p 2 ,1)+j!t j2!C0<br />

+ 0 (U0 , K)=<br />

1 , j p 2 , 1<br />

e , X 2 (1,j p 2 ,1)+j!t<br />

(3.60)<br />

(3.61)<br />

with a complex constant K that must be determ<strong>in</strong>ed to comply with the boundary conditions.<br />

With the de nitions of the propagated energy,<br />

and sto<strong>re</strong>d energy,<br />

W = 1<br />

4<br />

P = 1<br />

Re U I ; (3.62)<br />

2<br />

I I dX0<br />

d!<br />

46<br />

+ U U dB0<br />

d!<br />

; (3.63)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!