27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

0.1<br />

0.001<br />

0.00001<br />

-7<br />

1. 10<br />

-9<br />

1. 10<br />

0.1<br />

0.001<br />

0.00001<br />

-7<br />

1. 10<br />

-9<br />

1. 10<br />

ΔΡ<br />

ΔΡ<br />

0.2 0.4 0.6 0.8 1 Ω<br />

0.2 0.4 0.6 0.8 1 Ω<br />

0.1<br />

0.001<br />

0.00001<br />

-7<br />

1. 10<br />

-9<br />

1. 10<br />

0.1<br />

0.001<br />

0.00001<br />

-7<br />

1. 10<br />

-9<br />

1. 10<br />

ΔΡ<br />

ΔΡ<br />

4 One-dimensional quantum tunnell<strong>in</strong>g<br />

0.2 0.4 0.6 0.8 1 Ω<br />

0.2 0.4 0.6 0.8 1 Ω<br />

Figu<strong>re</strong> 4.4: Fraction of the probability contribution from the pass-band spectral components (4.32)<br />

for <strong>re</strong>ctangular (solid l<strong>in</strong>e), triangular (dotted l<strong>in</strong>e), and Gaussian (dashed l<strong>in</strong>e) <strong>in</strong>itial wave forms and<br />

short waves. The parameters a<strong>re</strong> k = 6 (upper left diagram), k = 20 (upper right diagram), k = 100<br />

(lower left diagram), and k = 1000 (lower right diagram), <strong>re</strong>spectively. The Gaussian wave packet was<br />

computed for a wide (n = 4, right dashed l<strong>in</strong>e <strong>in</strong> each pictu<strong>re</strong>) and a narrow (n= 10, left dashed l<strong>in</strong>e)<br />

example.<br />

For the Fourier transform pair (4.7) and (4.18), Parseval's theo<strong>re</strong>m <strong>re</strong>ads<br />

Z 1<br />

,1<br />

j (X)j 2 dX =2<br />

Z 1<br />

,1<br />

jA( )j 2 d : (4.30)<br />

Ow<strong>in</strong>g to normalisation, these <strong>in</strong>tegrals should give unity. The <strong>re</strong>ason why (4.29) still<br />

di ers from this value is simply the use of the scaled variables, whe<strong>re</strong> the factor p l could<br />

not be transformed. If we had calculated the probability from the orig<strong>in</strong>al spectra A( ),<br />

we would have obta<strong>in</strong>ed unity as expected. For the ratio of evanescent contribution and<br />

total probability we a<strong>re</strong> <strong>in</strong>te<strong>re</strong>sted <strong>in</strong>, the constant factor is of course ir<strong>re</strong>levant and cancels<br />

out.<br />

We now calculate the probability contribution from the spectral components <strong>in</strong> the evanescent<br />

<strong>re</strong>gion,<br />

Pe =<br />

Z 1<br />

,1<br />

jA( )j 2 d ; (4.31)<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!