27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.3 Solutions for the squa<strong>re</strong> barrier<br />

ma = MaxRecursion/. {opts}/.Options[OscInt],<br />

limpos, limneg},<br />

{limneg,limpos} = GaussTruncLims[w,k,n,wp];<br />

(If[limpos DoubleExponential,<br />

Work<strong>in</strong>gP<strong>re</strong>cision->wp,<br />

AccuracyGoal->ag,<br />

P<strong>re</strong>cisionGoal->pg,<br />

M<strong>in</strong>Recursion->mi,<br />

MaxRecursion->ma]] +<br />

If[limneg >= -1, 0,<br />

NIntegrate[fneg[-t,-Pi k/Sqrt[w],-x,-Pi k,w,k,n,l][xi],<br />

{xi,1,-limneg},<br />

Method->DoubleExponential,<br />

Work<strong>in</strong>gP<strong>re</strong>cision->wp,<br />

AccuracyGoal->ag,<br />

P<strong>re</strong>cisionGoal->pg,<br />

M<strong>in</strong>Recursion->mi,<br />

MaxRecursion->ma]]<br />

) GaussConst[w,k,n]<br />

];<br />

GaussEvanTruncTemp[f_, x_, t_, w_, k_, n_, l_, opts___Rule] :=<br />

Module[{limpos,limneg,<br />

wp = Work<strong>in</strong>gP<strong>re</strong>cision/.{opts}/.Options[OscInt],<br />

ag = AccuracyGoal/. {opts}/.Options[OscInt],<br />

pg = P<strong>re</strong>cisionGoal/. {opts}/.Options[OscInt],<br />

mi = M<strong>in</strong>Recursion/. {opts}/.Options[OscInt],<br />

ma = MaxRecursion/. {opts}/.Options[OscInt]},<br />

{limneg,limpos} = GaussTruncLims[w,k,n,wp];<br />

limneg = Max[limneg,-1];<br />

limpos = M<strong>in</strong>[limpos,1];<br />

NIntegrate[f[-t,Pi k/Sqrt[w],x,-Pi k,w,k,n,l][xi],<br />

{xi,limneg,limpos},<br />

Method->DoubleExponential,<br />

Work<strong>in</strong>gP<strong>re</strong>cision->wp,<br />

AccuracyGoal->ag,<br />

P<strong>re</strong>cisionGoal->pg,<br />

M<strong>in</strong>Recursion->mi,<br />

MaxRecursion->ma] GaussConst[w,k,n]<br />

];<br />

(*-- Driver functions for the computation of the wave <strong>in</strong>tegrals --*)<br />

(* Note that for the <strong>re</strong>flected wave outside and the left-go<strong>in</strong>g part<br />

<strong>in</strong>side the tunnel spatial coord<strong>in</strong>ate is <strong>in</strong>verted <strong>in</strong> the function calls<br />

because of the <strong>re</strong>verse motion of the partial waves. *)<br />

(* Note also that the spatial coord<strong>in</strong>ate for the <strong>re</strong>gions <strong>in</strong>side and<br />

beh<strong>in</strong>d the barrier is transformed to x-l. *)<br />

PhiInc[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

GaussPassTruncTemp[GaussIncPos,GaussIncNeg,x,t,w,k,n,l,opts] +<br />

GaussEvanTruncTemp[GaussIncPos,x,t,w,k,n,l,opts];<br />

PhiRef[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

GaussPassTruncTemp[GaussRefPos,GaussRefNeg,-x,t,w,k,n,l,opts] +<br />

GaussEvanTruncTemp[GaussRefPos,-x,t,w,k,n,l,opts];<br />

PhiTo[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

GaussPassTruncTemp[GaussToPos,GaussToNeg,x-l,t,w,k,n,l,opts] +<br />

GaussEvanTruncTemp[GaussToPos,x-l,t,w,k,n,l,opts];<br />

PhiFro[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

GaussPassTruncTemp[GaussFroPos,GaussFroNeg,-x+l,t,w,k,n,l,opts] +<br />

GaussEvanTruncTemp[GaussFroPos,-x+l,t,w,k,n,l,opts];<br />

PhiTrans[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

GaussPassTruncTemp[GaussTransPos,GaussTransNeg,x-l,t,w,k,n,l,opts] +<br />

GaussEvanTruncTemp[GaussTransPos,x-l,t,w,k,n,l,opts];<br />

PhiTun[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

PhiTo[x,t,w,k,n,l,opts] + PhiFro[x,t,w,k,n,l,opts];<br />

Phi[x_, t_, w_, k_, n_?Positive, l_, opts___Rule] :=<br />

Which[t < 0, 0,<br />

x >= l, PhiTrans[x,t,w,k,n,l,opts],<br />

0 < x && x < l, PhiTun[x,t,w,k,n,l,opts],<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!