27.12.2012 Views

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

Wave Propagation in Linear Media | re-examined

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

-60 -50 -40 -30 -20 -10<br />

3<br />

2<br />

1<br />

-1<br />

Ψ0<br />

X<br />

4 One-dimensional quantum tunnell<strong>in</strong>g<br />

A<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

-2 -1 1 2 ξ<br />

-2 -1 1 2 ξ<br />

Figu<strong>re</strong> 4.2: Triangular pulse with k = 6 and = 0:8. The left graph shows the <strong>re</strong>al part of the<br />

wave function (th<strong>in</strong> l<strong>in</strong>e) and the cor<strong>re</strong>spond<strong>in</strong>g probability density (thick l<strong>in</strong>e). The right graph gives<br />

the absolute value jA( ) l ,1=2 j of the wave number spectrum (4.25), peaked about = 1=2 . The<br />

evanescent <strong>re</strong>gion is the <strong>in</strong>terval [,1; 1].<br />

Like befo<strong>re</strong>, the factor p 3=l is due to the normalisation R 1<br />

easily found to be<br />

or, <strong>in</strong> scaled variables,<br />

A tria ( )<br />

p l<br />

p<br />

3<br />

=<br />

4 3k2 Atria( )= p p<br />

3<br />

l<br />

4<br />

1<br />

1 , 1<br />

p<br />

,1 0 0<br />

dx =1. The spectrum is<br />

s<strong>in</strong>( 0 , ) l<br />

4<br />

( 0 , ) l<br />

! 2<br />

e<br />

4<br />

,j( 0, ) l 2 (4.24)<br />

,j k 1, p<br />

1<br />

2e 2<br />

The wave packet and its spectrum a<strong>re</strong> shown <strong>in</strong> g. 4.2 .<br />

,j2 k 1, p<br />

1<br />

, e<br />

, 1 : (4.25)<br />

The last example is also the most popular <strong>in</strong> the literatu<strong>re</strong>: the Gaussian wave packet. If we<br />

start with a normal distribution N( ; 2 ) for the probability density and choose = ,l=2,<br />

= l=(2n), we get the wave function<br />

0 (x) =<br />

s<br />

2n<br />

l p 2 e,n2 ( x l +1 2) 2<br />

e j 0x<br />

: (4.26)<br />

As the envelope function is not truncated at x =0,ca<strong>re</strong> must be taken to set n su ciently<br />

large so that the wave function almost vanishes <strong>in</strong>side the barrier. The spectrum of this wave<br />

packet is simply<br />

Agauss ( )= p 1<br />

lp<br />

p e<br />

2 n 2 , ( 0<br />

78<br />

, )l<br />

2n<br />

2<br />

,j( 0, ) l 2 (4.27)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!