10.02.2013 Views

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

L<strong>on</strong>ger campaigns with improved m<strong>on</strong>olithics<br />

for lining <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt-hold furnaces<br />

Andy Wynn, John Coppack and Tom Steele, Thermal Ceramics UK Ltd.<br />

To remain competitive, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers<br />

c<strong>on</strong>tinue to increase productivity<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir melt-hold furnaces. Increasing<br />

heat input to <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace using more<br />

powerful burners is comm<strong>on</strong> practice.<br />

But faster melting leads to increased<br />

metal losses from surface oxidati<strong>on</strong> and<br />

to segregati<strong>on</strong> from large heat gradients.<br />

These effects are countered by increased<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes and increased stirring. Given<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> increasingly challenging envir<strong>on</strong>ment<br />

within which <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory lining has to<br />

work, traditi<strong>on</strong>al lining soluti<strong>on</strong>s can no<br />

l<strong>on</strong>ger be relied up<strong>on</strong> to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> service<br />

lives that were previously achieved.<br />

Therefore, a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace<br />

lining materials is required to cope with<br />

today’s <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> furnace. This work<br />

reports <strong>on</strong> a new m<strong>on</strong>olithic material<br />

with improved performance, compared to<br />

existing materials, designed for use in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ramp/hearth area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> furnaces.<br />

Improved behaviour against <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

performance criteria in this furnace regi<strong>on</strong><br />

are dem<strong>on</strong>strated in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory<br />

using industry standard test methods.<br />

The refractory lining <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical furnace<br />

used for holding and melting <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> has<br />

to withstand a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> physical and<br />

chemical envir<strong>on</strong>ments. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

areas within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace (Fig. 1) presents a different<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> operating c<strong>on</strong>diti<strong>on</strong>s, in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peak temperature, metal c<strong>on</strong>tact, salt c<strong>on</strong>tact,<br />

etc. Therefore, in order for a m<strong>on</strong>olithic material<br />

to perform in a particular area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace, it needs to cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> specific<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in that regi<strong>on</strong>. This<br />

is why furnace linings are complex arrangements,<br />

with different materials installed in different<br />

locati<strong>on</strong>s [1].<br />

Background: In <str<strong>on</strong>g>the</str<strong>on</strong>g> last 30 years, a group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>olithic technologies has emerged, specifically<br />

designed to perform within <str<strong>on</strong>g>the</str<strong>on</strong>g> unique<br />

envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt-hold fur-<br />

naces. These Al-resistant grades <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tain<br />

‘n<strong>on</strong>-wetting’ additives, particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal c<strong>on</strong>tact areas, to minimize interacti<strong>on</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory and <str<strong>on</strong>g>the</str<strong>on</strong>g> melt to suppress<br />

damage from ‘corundum growth’ [2].<br />

As <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers strive to increase<br />

productivity, <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

is becoming more arduous. Chamber<br />

temperatures are increasing and more aggressive<br />

fluxes are being used, necessitating more<br />

frequent and severe cleaning operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> furnace walls. To maintain high productivity,<br />

it is necessary to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> furnace downtime. The more aggressive<br />

c<strong>on</strong>diti<strong>on</strong>s today mean that lining materials<br />

developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> past are now being used be-<br />

y<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original intended design boundaries<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir service performance is under threat,<br />

leading to more frequent lining repairs.<br />

Aluminium producers take a furnace <str<strong>on</strong>g>of</str<strong>on</strong>g>fline<br />

for repair <strong>on</strong>ce a critical lining area has degraded<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency<br />

and/or safety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>. At this stage,<br />

not all <str<strong>on</strong>g>the</str<strong>on</strong>g> lining will have degraded to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point that it is in need <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement or repair.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace down-<br />

time is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

most quickly and frequently degraded during<br />

operati<strong>on</strong>. In order to increase campaign<br />

times and decrease frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> stoppages,<br />

we need to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> service life <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

weak link in <str<strong>on</strong>g>the</str<strong>on</strong>g> lining. To identify <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

most frequently and quickly degraded, we<br />

worked with several <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers.<br />

Their feedback suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong><br />

area that was <str<strong>on</strong>g>the</str<strong>on</strong>g> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> repair downtime<br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth area.<br />

The failure mechanisms within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

envir<strong>on</strong>ment, that limit refractory service life,<br />

are listed in [1]. Since our target is to improve<br />

refractory performance in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth<br />

regi<strong>on</strong>, we need to understand which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

failure modes are most critical to lining performance<br />

in this regi<strong>on</strong>.<br />

Performance targets: A study <str<strong>on</strong>g>of</str<strong>on</strong>g> working<br />

practices and furnace operating c<strong>on</strong>diti<strong>on</strong>s at<br />

MEASURING & CONTROL<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers revealed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

melt-hold furnace is subjected to severe mechanical<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stress during <str<strong>on</strong>g>the</str<strong>on</strong>g> loading<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> large ingot down <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp. Frequent loading<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heavy ingot to feed <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

by fork lift truck, subjects <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp to severe<br />

abrasive forces. As <str<strong>on</strong>g>the</str<strong>on</strong>g> ingot is usually at room<br />

temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is also c<strong>on</strong>siderable <str<strong>on</strong>g>the</str<strong>on</strong>g>r-<br />

mal shock <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth refractory,<br />

which is at furnace operating temperature.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp and <str<strong>on</strong>g>the</str<strong>on</strong>g> complete<br />

hearth are in c<strong>on</strong>tact with molten metal, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

refractory is also subject to chemical attack<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy, alloying elements and flux additi<strong>on</strong>s.<br />

A study <str<strong>on</strong>g>of</str<strong>on</strong>g> ramp / hearth degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al-resistant materials c<strong>on</strong>taining ‘n<strong>on</strong>-wetting’<br />

additives suggested that damage leading<br />

to furnace downtime is mostly due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mechanical acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

shock from ingot loading. We <str<strong>on</strong>g>the</str<strong>on</strong>g>refore focused<br />

our work <strong>on</strong> developing a new Al-resistant<br />

material with improved abrasi<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance. To achieve significant<br />

improvements in performance we set out<br />

to increase abrasi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance<br />

by 20% compared to existing materials.<br />

As metal and alkali resistance are sec<strong>on</strong>dary<br />

performance parameters in this furnace regi<strong>on</strong>,<br />

we also had to ensure that any changes<br />

we made to <str<strong>on</strong>g>the</str<strong>on</strong>g> materials did not degrade<br />

chemical resistance.<br />

EXPERIMENTAL<br />

Fig. 1: Furnace<br />

lining z<strong>on</strong>es in a<br />

typical <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

melt-hold furnace<br />

Two existing, industry leading Al-resistant<br />

m<strong>on</strong>olithic materials used by many <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

producers in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 19<br />

Images: Thermal Ceramics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!