10.02.2013 Views

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MELTING, RECYCLING & HEAT TREATMENT<br />

The new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

heat treatment plants – a vanguard c<strong>on</strong>cept<br />

Markus Belte and Dan Dragulin, Belte AG<br />

The vigorous discussi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

heat treatment community about <str<strong>on</strong>g>the</str<strong>on</strong>g> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate technique<br />

becomes within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present work a genuine c<strong>on</strong>crete answer.<br />

This paper is completely dedicated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

treatment plants; it first introduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> high speed heat transfer<br />

processes and presents practical results<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>irs <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamical analysis and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a detailed perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vanguard c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat treatment plants. The<br />

present work is based <strong>on</strong> original experiments<br />

and investigati<strong>on</strong>s obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

authors and will present techniques never<br />

used before in <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial heat treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>.<br />

Infrared radiati<strong>on</strong> – <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical aspects<br />

The radiati<strong>on</strong> heat transfer process is described<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> law <str<strong>on</strong>g>of</str<strong>on</strong>g> Stefan-Boltzmann:<br />

• ∂Q<br />

Q = ⎯⎯ = εσST 4<br />

∂t (1)<br />

• 4 4<br />

Q = εσS [T O - T U ] (2)<br />

•<br />

Where: Q = heat flow rate; ε = emissivity 1 ;<br />

σ = 5.67 x 10 -8 W/m 2 K 4 Stefan-Boltzmannc<strong>on</strong>stant;<br />

S = surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitting body;<br />

T = temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitting body (Kelvin);<br />

T O = surface temperature; T U = envir<strong>on</strong>ment<br />

temperature 2 .<br />

The heating rate can be calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following formula:<br />

mc 100 TWB Ta<br />

τ = ⎯ ⎯⎯ [ ξ´(⎯⎯)- ξ´´ (⎯⎯)]<br />

α T 3<br />

U<br />

TU TU (⎯⎯)<br />

100<br />

(3) 3<br />

Where: m = mass/surface unity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

to be heated; c =specific heat; TWB = heat<br />

treatment temperature; TU = envir<strong>on</strong>ment temperature;<br />

ξ = f(TWB/TU) A special case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer process<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared heat transfer process.<br />

“Infrared radiati<strong>on</strong>, that porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electromagnetic spectrum that extends from<br />

1 ε Є (0,1] ; for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal black body: ε = 1<br />

2 The envir<strong>on</strong>ment could be <str<strong>on</strong>g>the</str<strong>on</strong>g> interior <str<strong>on</strong>g>of</str<strong>on</strong>g> a furnace.<br />

3 According to [3]<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g wavelength, or red, end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> visiblelight<br />

range to <str<strong>on</strong>g>the</str<strong>on</strong>g> microwave range. Invisible<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> eye, it can be detected as a sensati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> warmth <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> skin. The infrared range<br />

is usually divided into three regi<strong>on</strong>s: near<br />

infrared (nearest <str<strong>on</strong>g>the</str<strong>on</strong>g> visible spectrum), with<br />

wavelengths 0.78 to about 2.5 micrometres (a<br />

micrometre, or micr<strong>on</strong>, is 10 -6 metre); middle<br />

infrared, with wavelengths 2.5 to about 50 micrometres;<br />

and far infrared, with wavelengths<br />

50 to 1,000 micrometres. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong><br />

emitted by a moderately heated surface is infrared;<br />

it forms a c<strong>on</strong>tinuous spectrum. Molecular<br />

excitati<strong>on</strong> also produces copious infrared<br />

radiati<strong>on</strong> but in a discrete spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> lines or<br />

bands.” [Encyclopaedia Britannica [1]]<br />

“Radiant heating has been used in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> 1930s, where it was introduced to<br />

bake finishes <strong>on</strong> cars. It took time for <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

technology to gain acceptance but today <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technology is used in most industrialised countries<br />

especially for drying and curing <str<strong>on</strong>g>of</str<strong>on</strong>g> paints<br />

and drying <str<strong>on</strong>g>of</str<strong>on</strong>g> textile, pulp and paper. Infrared<br />

energy is unique because it can heat materials<br />

or objects without heating <str<strong>on</strong>g>the</str<strong>on</strong>g> air around <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

That allows infrared heat to be c<strong>on</strong>centrated<br />

exactly where it is wanted without much loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy.” [2]<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> an infrared heating <str<strong>on</strong>g>the</str<strong>on</strong>g> maxi-<br />

mum temperature which can be reached depends<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment temperature:<br />

T - T U = (T max - T U)(1-e -B . τ ) (4) [3]<br />

Where: T = body temperature; τ = durati<strong>on</strong>;<br />

T U = envir<strong>on</strong>ment temperature; T max = maximum<br />

temperature; B = coefficient which takes<br />

into account <str<strong>on</strong>g>the</str<strong>on</strong>g> process c<strong>on</strong>diti<strong>on</strong>s<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a classic heat transfer process<br />

performed exclusively through air c<strong>on</strong>vecti<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> body temperature can not exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> air<br />

temperature.<br />

Gas radiati<strong>on</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> flame radiati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two<br />

types radiati<strong>on</strong>: visible and invisible/infrared<br />

radiati<strong>on</strong>. The last <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> invisible infrared<br />

radiati<strong>on</strong> emitted by carb<strong>on</strong> di<str<strong>on</strong>g>oxide</str<strong>on</strong>g> and<br />

steam 4 .<br />

The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transferred through<br />

radiati<strong>on</strong> from a <str<strong>on</strong>g>layer</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 respectively H 2O<br />

to a grey surface are:<br />

3.2 3.2<br />

Tg Tw<br />

qCO2 = ε . 10.35(p .<br />

CO2 s) 0.4 [(⎯⎯) - (⎯⎯)<br />

100 100<br />

Tg<br />

0.65<br />

. (⎯) ] Tw 4 After J. H. Brunklaus<br />

Fig. 1: Bilateral (green) and unilateral (red) exposure to radiati<strong>on</strong> (not coated, h = 10 cm)<br />

(5)[[7]→[6]]<br />

60 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Abbildungen: Belte

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!