10.02.2013 Views

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

q H2O = ε(46.52 - 94.9p H2Os)(p2 . s) 0.6<br />

3 ⎯⎯<br />

3 ⎯⎯<br />

2.32 + 1.37 √p 2 s 2.32 + 1.37 √p 2 s<br />

Tg Tw [(⎯⎯) -(⎯⎯)<br />

100 100 ]<br />

(6)[[7]→[6]]<br />

Where: q = quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat [W/m²]; p = partial<br />

pressure [daN/cm²]; s = <str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness [m];<br />

T g = gas temperature [K]; T w = temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grey surface [K]; ε = emissivity rapport:<br />

A λ = absorbed radiati<strong>on</strong> and A λs = total radiated<br />

energy<br />

Aλ<br />

ε = ⎯<br />

A λs<br />

Infrared heating <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> castings<br />

Electric radiant burners<br />

(7)[[7]→[6]<br />

Experiment purpose – determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• heating rate<br />

• maximal reached temperature<br />

• influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface quality<br />

������������������������������������������������������<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

coated or not<br />

as cast<br />

100% graphite coated<br />

• distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared source and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irradiated surface (h);<br />

Experimental c<strong>on</strong>diti<strong>on</strong>s:<br />

• experimental infrared facility<br />

industrial IR installati<strong>on</strong><br />

power : 108 KW/m²<br />

nominal power: 37.8 kW<br />

(active surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.35 m²)<br />

air cooling system<br />

• test specimen<br />

die casting: cylinder head<br />

Al-Si-Mg-Cu alloy<br />

weight: 26 kg<br />

wall thickness: 120 mm<br />

• exposure to radiati<strong>on</strong><br />

bilateral and unilateral<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a unilateral exposure to radiati<strong>on</strong><br />

(<strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared module is switched<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f) we obtain a heating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.11 °C/s (between<br />

50 and 425°C 5 ). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a bilateral<br />

exposure to radiati<strong>on</strong> we obtain a heating<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.43 °C/s. Enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong><br />

���������������<br />

����������������<br />

�����������������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

�������������������������������������<br />

��������������������������������������������<br />

����������@�������������������������������������������<br />

power by 100% (in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a bilateral exposure<br />

to radiati<strong>on</strong>) quadruped <str<strong>on</strong>g>the</str<strong>on</strong>g> heating<br />

rate by a coeval reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong>.<br />

The unequal temperature maximum<br />

is c<strong>on</strong>spicuous (fig.1).<br />

Energy c<strong>on</strong>sumpti<strong>on</strong>:<br />

• unilateral exposure to radiati<strong>on</strong>: ~ 55 min<br />

55<br />

• E = ⎯ . 18.31 = 16.78kWh<br />

60<br />

• bilateral exposure to radiati<strong>on</strong>: ~ 15 min<br />

15<br />

• E = ⎯ . 18.31 = 4.58kWh<br />

60<br />

Where: 0.35 m²………………………37.8 kW<br />

0.169 m² 6 ………….……………x kW<br />

X = 18.31 kW/side → X = 36.63 kW for a<br />

bilateral exposure<br />

The coating leads to a c<strong>on</strong>siderable enhancement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface heating rate and simultaneously<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature<br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

5 One has to pay maximum attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> solidus temperature<br />

(especially for Al alloys c<strong>on</strong>taining Cu).<br />

6 casting surface exposed to radiati<strong>on</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!