10.02.2013 Views

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MELTING, RECYCLING & HEAT TREATMENT<br />

Fig. 5: a) Gas injecti<strong>on</strong> system; b) Inducti<strong>on</strong> coil with hood<br />

An exhaust hood above <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible is used to<br />

collect <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous reacti<strong>on</strong> products and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unc<strong>on</strong>sumed gasses. An exhaust fan supplies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>line quality gas measurement with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collected gasses. To make sure that no furnace<br />

atmosphere is sucked into <str<strong>on</strong>g>the</str<strong>on</strong>g> hood during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment more gas is injected than removed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> fan. Due to that <str<strong>on</strong>g>the</str<strong>on</strong>g> system has a slight<br />

over pressure under <str<strong>on</strong>g>the</str<strong>on</strong>g> hood, too.<br />

Fig. 5a) shows a drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas injecti<strong>on</strong><br />

system. The inducti<strong>on</strong> coil and <str<strong>on</strong>g>the</str<strong>on</strong>g> used hood<br />

to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous products are shown in<br />

Fig. 5b).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first experimental campaign 12 tests<br />

are performed (Table 1). The gas injecti<strong>on</strong> time<br />

is limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible volume. The injecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gas was stopped when <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible is<br />

fully filled by dross. The gas compositi<strong>on</strong> is<br />

limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> installed gas analyzing<br />

system and also for security reas<strong>on</strong>s.<br />

4.2 Results<br />

a) b)<br />

In Fig. 6 <str<strong>on</strong>g>the</str<strong>on</strong>g> metal losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests are presented.<br />

They are grouped according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

used feedstock materials. The chart shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gross-remelting losses, which are calculated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> final weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cast to initial<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> feedstock, see equati<strong>on</strong> 2.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> gross-remelting losses <str<strong>on</strong>g>the</str<strong>on</strong>g> metal c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross is not c<strong>on</strong>sidered. The column<br />

chart compares <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different gases<br />

as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main alloying<br />

element (magnesium) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gross-remelting<br />

losses.<br />

The metal losses decrease for all three materials<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 , CO and CH4 . The<br />

c<strong>on</strong>trol experiments already indicated significant<br />

losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt phase. In presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> di<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal losses are doubled. The maximum loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more than 45% is represent by <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy AlMg3 and CO2 as injected<br />

gas. A linear dependence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnesium<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy to <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal loss is<br />

not evident.<br />

To divide <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic part from <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>metallic<br />

dross comp<strong>on</strong>ents a subsequent salt<br />

melt step is c<strong>on</strong>ducted. A typical salt flux (55%<br />

Experiment No. Injected gas compositi<strong>on</strong> Mg-C<strong>on</strong>tentin Mass.-% Treatment in min<br />

NV1 N2 (Chamber atmosphere) 0 120<br />

NV2 N2 (Chamber atmosphere) 2.82 20<br />

NV3 N2 (Chamber atmosphere) 4.86 20<br />

HV1KD Ar + 15 Vol.-% CO 2 0 32<br />

HV2KD Ar + 15 Vol.-% CO 2 2.82 21<br />

HV3KD Ar + 15 Vol.-% CO 2 4.86 14<br />

HV4KM Ar + 7 Vol.-% CO 0 32<br />

HV5KM Ar + 7 Vol.-% CO 2.82 20<br />

HV6KM Ar + 7 Vol.-% CO 4.86 20<br />

HV7KW Ar + 5 Vol.-% CH 4 0 19<br />

HV8KW Ar + 5 Vol.-% CH 4 2.82 19<br />

HV9KW Ar + 5 Vol.-% CH 4 4.86 19<br />

Table 1: Experimental plan<br />

Fig. 6: Gross-remelting losses<br />

mcast<br />

remelting loss gross in % = ⎯⎯⎯⎯ (2)<br />

m feedstock<br />

NaCl, 45% KCl and ≤ 1% CaF 2 ) is used. To<br />

guarantee a complete separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metal and<br />

dross a high salt factor is adjusted.<br />

The net-remelting losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting experiments<br />

can be determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

metal yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt experiments, see<br />

equati<strong>on</strong> 3: (3)<br />

mcast + m recovered from dross<br />

remelting loss net in % = ⎯⎯⎯⎯⎯⎯⎯⎯⎯<br />

m feedstock<br />

The results are shown in Fig. 7. The metal<br />

c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross vary between 30 and<br />

97% (average 70%). The net metal losses decrease<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way like <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal<br />

losses according to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

treatment gas, in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , CO and<br />

CH 4 . The net-remelting losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol<br />

experiments increase from 0.1% via 0.4%<br />

through to 1.3% with rising magnesium c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. In c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal<br />

losses <str<strong>on</strong>g>the</str<strong>on</strong>g> losses after metal separati<strong>on</strong> by<br />

salt treatment rise for all three injected gases<br />

with increasing magnesium c<strong>on</strong>tent. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal loss values for CO and CH 4 treatment<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> three points show a linear dependence<br />

<strong>on</strong> magnesium c<strong>on</strong>centrati<strong>on</strong>.<br />

Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> gross and net metal losses it<br />

is good to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> dross has a high metal<br />

c<strong>on</strong>tent. This can be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> dross handling<br />

and manual stripping but it can also be a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross structure. It could be observed<br />

that especially in experiments with CO 2 injecti<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dross structure had a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s each<br />

with metal film.<br />

Before <str<strong>on</strong>g>the</str<strong>on</strong>g> dross is remelted under salt<br />

some samples are taken to analyze parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dross. The sampling is accomplished by<br />

optical criteria. XRD analyses have proven<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r carbide nor oxycarbide phase while<br />

EDX analyses have shown <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, O and C, so that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

68 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!