18.01.2015 Views

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Jefe <strong>de</strong> Línea /<br />

Group Lea<strong>de</strong>r:<br />

Mauricio García Mateu<br />

Estabilidad e ingeniería<br />

<strong>de</strong> proteínas víricas<br />

Stability and engineering<br />

of viral proteins<br />

C6<br />

Publicaciones<br />

Publications<br />

Resumen <strong>de</strong> investigación<br />

Research summary<br />

<strong>de</strong>l Álamo, M. and Mateu, M.G. (2005). Electrostatic repulsion,<br />

compensatory mutations, and long-range non-additive effects at the<br />

dimerization interface of the HIV capsid protein.<br />

J. Mol. Biol. 345, 893-906.<br />

Postdoctorales /<br />

Fellows:<br />

Roberto Mateo Fernán<strong>de</strong>z<br />

Becarios Predoctorales /<br />

Predoctoral Fellows:<br />

Marta <strong>de</strong>l Álamo Camuñas<br />

Aura Carreira Moreno<br />

Eva Luna García<br />

Milagros Castellanos Molina<br />

Verónica Rincón Forero<br />

Rebeca Bocanegra Rojo<br />

Inmunología y Virología Immunology and Virology<br />

Nuestra investigación se centra en el estudio <strong>de</strong> los<br />

<strong>de</strong>terminantes moleculares <strong>de</strong>l ensamblaje, estabilidad,<br />

propieda<strong>de</strong>s y funciones biológicas <strong>de</strong> virus, para el diseño<br />

<strong>de</strong> nuevas vacunas y antivirales. Utilizamos técnicas <strong>de</strong><br />

biología molecular y celular, bioquímica y biofísica. Entre<br />

nuestros colaboradores se cuentan J.L.Neira (CBMC),<br />

Pedro J. <strong>de</strong> Pablo (UAM), J.M.Almendral (CBMSO), G.Rivas<br />

(CIB) y P.L.Davies (Queen´s University, Canada).<br />

Ingeniería <strong>de</strong> virus <strong>de</strong> mayor estabilidad, y dinámica <strong>de</strong><br />

mutaciones compensatorias en la cápsida <strong>de</strong>l virus <strong>de</strong> la<br />

fiebre aftosa. Hemos introducido nuevos puentes disulfuro<br />

o salinos entre subunida<strong>de</strong>s <strong>de</strong> la cápsida, y se han<br />

obtenido dos mutantes <strong>de</strong> termoestabilidad incrementada,<br />

<strong>de</strong> interés para el <strong>de</strong>sarrollo <strong>de</strong> vacunas más estables, que<br />

continúan siendo analizados. Hemos encontrado a<strong>de</strong>más<br />

en la cápsida una sorpren<strong>de</strong>nte dinámica <strong>de</strong> mutaciones<br />

con efectos compensatorios sobre la eficacia biológica<br />

durante la evolución <strong>de</strong> este virus.<br />

Participación <strong>de</strong>l ácido nucleico genómico y <strong>de</strong> cavida<strong>de</strong>s <strong>de</strong><br />

la cápsida <strong>de</strong>l virus diminuto <strong>de</strong>l ratón en las propieda<strong>de</strong>s<br />

conformacionales, térmicas y mecánicas <strong>de</strong>l virión. Hemos<br />

encontrado que la conservación <strong>de</strong>l tamaño y la forma <strong>de</strong><br />

pequeñas cavida<strong>de</strong>s presentes en la cápsida pue<strong>de</strong> ser<br />

necesaria para la flexibilidad <strong>de</strong> la misma a través <strong>de</strong> un<br />

cambio conformacional que se requiere para la infección.<br />

A<strong>de</strong>más, hemos <strong>de</strong>mostrado que el DNA genómico es<br />

aprovechado como material para la arquitectura <strong>de</strong>l virión, y<br />

refuerza térmica y mecánicamente la cápsida <strong>de</strong> un modo<br />

compatible con la flexibilidad requerida para la infección.<br />

Efectos <strong>de</strong> la aglomeración molecular sobre el ensamblaje<br />

<strong>de</strong> la cápsida <strong>de</strong>l virus <strong>de</strong> la inmuno<strong>de</strong>ficiencia humana, y<br />

análisis <strong>de</strong> inhibidores <strong>de</strong> ensamblaje. Hemos puesto a<br />

punto un sistema <strong>de</strong> ensamblaje in vitro <strong>de</strong> la cápsida que<br />

ocurre en condiciones fisiológicas <strong>de</strong> fuerza iónica y<br />

concentración <strong>de</strong> proteína; estamos ensayando a<strong>de</strong>más el<br />

efecto inhibidor sobre el ensamblaje <strong>de</strong> la cápsida, <strong>de</strong><br />

variantes proteicos y peptídicos. Estos estudios son<br />

importantes para el <strong>de</strong>sarrollo <strong>de</strong> nuevos fármacos anti-VIH.<br />

Research in our group is focused on the molecular<br />

<strong>de</strong>terminants of assembly, stability, properties and biological<br />

functions of viral capsids, for the <strong>de</strong>sign of vaccines and<br />

antiviral agents. The techniques we use involve those of<br />

molecular and cell biology, biophysics and biochemistry.<br />

Our collaborators inclu<strong>de</strong> J.L.Neira (CBMC), Pedro J. <strong>de</strong><br />

Pablo (UAM), J.M.Almendral (CBMSO), G. Rivas (CIB) and<br />

P.L.Davies (Queen´s University, Canada).<br />

Engineering viruses with increased thermostability, and<br />

dynamics od compensatory mutations in the foot-and-mouth<br />

disease virus capsid. We have introduced intersubunit<br />

disulfi<strong>de</strong> bonds or salt bridges in the virus capsid. Two<br />

mutants show increased thermostability and are potentialy<br />

useful for the <strong>de</strong>velopment of thermostable vaccines. We<br />

have also found in the capsid a surprising dynamics of<br />

<strong>de</strong>terministic mutations that exert compensatory effects on<br />

the biological fitness during the evolution of this virus.<br />

Participation of the genomic nucleic acid and capsid cavities<br />

in the conformational, thermal and mechanical properties of<br />

the minute virus of mice. We have found evi<strong>de</strong>nce that<br />

conservation of the size and shape of small cavities naturally<br />

found in the capsid is required for flexibility and the<br />

occurrence of a capsid conformational change nee<strong>de</strong>d for<br />

infectivity. In addition, we have shown that the genomic DNA<br />

exerts an architectural role by thermally and mechanically<br />

reinforcing the capsid. Such reinforcement is compatible<br />

with the local flexibility that may be required for the abovementioned<br />

conformational change to occur.<br />

Effects of molecular crowding on the assembly of the human<br />

immuno<strong>de</strong>ficiency virus capsid, and analyses of assembly<br />

inhibitors. We have <strong>de</strong>veloped an in vitro system for the<br />

assembly of the capsid un<strong>de</strong>r physiological conditions of<br />

ionic strength and effective protein concentration. We are<br />

also analysing the inhibitory effect of pepti<strong>de</strong> and protein<br />

variants on capsid assembly. These studies are important<br />

for the <strong>de</strong>velopment of new anti-HIV compounds.<br />

Reguera, J., Grueso, E., Carreira, A., Sánchez-Martínez, C.,<br />

Almendral, J.M. and Mateu, M.G. (2005). Functional relevance of<br />

amino acid residues involved in interactions with or<strong>de</strong>red nucleic acid<br />

in a spherical virus. J. Biol. Chem. 280, 17969-17977.<br />

Lidón-Moya, M.C., Barrera, F.N., Bueno, M., Pérez-Jiménez, R.,<br />

Sancho, J., Mateu, M.G. and Neira, J.L. (2005). An extensive<br />

thermodynamic characterization of the dimerization domain<br />

of the HIV-1 capsid protein. Protein Sci. 14, 2387-2404.<br />

Del Álamo, M., Rivas, G. and Mateu, M.G. (2005). Effect of<br />

macromolecular crowding agents on human immuno<strong>de</strong>ficiency virus<br />

type-1 capsid protein assembly in vitro. J.Virol. 79, 14271-14281.<br />

Riolobos, L., Reguera, J., Mateu, M.G. and Almendral, J.M. (2006).<br />

Nuclear transport of trimeric assembly intermediates exerts a<br />

morphogenetic control on the icosahedral parvovirus capsid.<br />

J. Mol. Biol. 357, 1026-1038.<br />

Carreira, A. and Mateu, M.G. (2006). Structural tolerance versus<br />

functional intolerance to mutation of amino acid residues surrounding<br />

cavities in a parvovirus capsid. J. Mol. Biol. 360, 1081-1093.<br />

Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gómez-<br />

Herrero, J., Mateu, M.G. and <strong>de</strong> Pablo, P.J. (2006). DNA-mediated<br />

anisotropic mechanical reinforcement of a virus.<br />

Proc. Natl. Acad. Sci. USA 103, 13706-13711.<br />

Tesis doctorales<br />

Doctoral Theses<br />

Marta <strong>de</strong>l Álamo Camuñas. (2005). Disección termodinámica <strong>de</strong> una<br />

interfase proteína-proteína implicada en la formación <strong>de</strong> la cápsida<br />

<strong>de</strong>l virus <strong>de</strong> la inmuno<strong>de</strong>ficiencia humana.<br />

<strong>Universidad</strong> Autónoma <strong>de</strong> <strong>Madrid</strong>.<br />

Aura Carreira Moreno. (2005). Estudio <strong>de</strong>l <strong>de</strong>sensamblaje in vitro<br />

y análisis estructura-función <strong>de</strong> cavida<strong>de</strong>s <strong>de</strong> la cápsida <strong>de</strong>l virus<br />

diminuto <strong>de</strong>l ratón.<br />

<strong>Universidad</strong> Autónoma <strong>de</strong> <strong>Madrid</strong>.<br />

Figura 1<br />

Figura 1. Estructura <strong>de</strong> la cápsida <strong>de</strong>l virus diminuto <strong>de</strong>l ratón. Se indican los residuos en las interfases entre subunida<strong>de</strong>s que son críticos para el ensamblaje (violeta) y<br />

los implicados en un cambio conformacional que es necesario para la infectividad (amarillo).<br />

Estos últimos residuos se localizan cerca <strong>de</strong> cavida<strong>de</strong>s <strong>de</strong> la cápsida; una <strong>de</strong> éstas se muestra en <strong>de</strong>talle en la Fig.2 (figura <strong>de</strong> D.Abia y A.R.Ortiz).<br />

Figura 2<br />

Figure 1. Structure of the capsid of the minute virus of mice. Those residues at the intersubunit interfaces that are critical for capsid assembly (violet) or involved<br />

in a conformational change nee<strong>de</strong>d for infectivity (yellow) are indicated. One of these residues is shown in <strong>de</strong>tail in Fig.2 (figure by D.Abia and A.R.Ortiz).<br />

CBM 2005/2006<br />

66<br />

Figura 2. Esquema <strong>de</strong> una cavidad en la cápsida <strong>de</strong>l virus diminuto <strong>de</strong>l ratón.<br />

Los residuos que ro<strong>de</strong>an la cavidad se representan en diferentes colores, y el contorno <strong>de</strong> la cavidad se representa en blanco.<br />

Figure 2. Scheme of a cavity in the capsid of the minute virus of mice. The residues that surround the cavity are shown in different colours,<br />

and the cavity contour is represented in white.<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!