18.01.2015 Views

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

Drosophila - Severo Ochoa - Universidad Autónoma de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Jefe <strong>de</strong> Línea /<br />

Group Lea<strong>de</strong>r:<br />

Francisco Wandosell<br />

Mecanismos moleculares <strong>de</strong><br />

neuro<strong>de</strong>generación y regeneración<br />

Molecular mechanism of<br />

neuro<strong>de</strong>generation and regeneration<br />

D12<br />

Publicaciones<br />

Publications<br />

Resumen <strong>de</strong> investigación<br />

Research summary<br />

González-Billault, C., Del Rio, J. A., Urena, J. M., Jiménez-Mateos, E. M.,<br />

Barallobre, M. J., Pascual, M., Pujadas, L., Simó, S., La Torre, A., Gavin,<br />

R., Wandosell, F., Soriano, E. and Ávila, J. (2005). A role of MAP1B in<br />

Reelin-<strong>de</strong>pen<strong>de</strong>nt Neuronal Migration”. Cereb. Cortex. 8, 1134-1145.<br />

Personal Científico /<br />

Scientific Staff:<br />

Inés Antón<br />

Mª José Benítez<br />

María Teresa Moreno<br />

Juan José Garrido<br />

Becarios Predoctorales /<br />

Predoctoral Fellows:<br />

Marta Salcedo<br />

Diana Simón Sanz<br />

Olga Varea Abbad<br />

Inmaculada Bañón Rodríguez<br />

Ana Franco Villanueva<br />

Héctor Díez Nuño<br />

Técnicos <strong>de</strong> Investigación /<br />

Technical Assistance:<br />

Mª Jesús Martín-Bermejo<br />

Lara Ro<strong>de</strong>stein<br />

Neurobiología Neurobiology<br />

Estamos interesados en el análisis <strong>de</strong> los mecanismos<br />

moleculares disparados por procesos neuro<strong>de</strong>generativos.<br />

Intentamos enten<strong>de</strong>r señales que regulan la morfogénesis<br />

celular; y como esta señalización pue<strong>de</strong> estar alterada en<br />

patologías. Para en un segundo abordaje diseñar<br />

alternativas regenerativas.<br />

Primero, analizando una serie <strong>de</strong> mo<strong>de</strong>los celulares <strong>de</strong><br />

neuro<strong>de</strong>generación, hemos constatado que una<br />

<strong>de</strong>sregulación <strong>de</strong> la actividad <strong>de</strong> la quinasa Glicógeno<br />

Sintasa 3 (GSK3) correlaciona con <strong>de</strong>generación y en<br />

algunos casos con apoptosis neuronal. Así, la inhibición<br />

farmacológica <strong>de</strong> GSK3 o la expresión <strong>de</strong> cDNAs<br />

dominantes negativos <strong>de</strong> esta quinasa previene la muerte<br />

neuronal. A<strong>de</strong>más hemos <strong>de</strong>finido que una activación <strong>de</strong> la<br />

actividad GSK3 no necesariamente correlaciona con muerte<br />

neuronal, ni con neuro<strong>de</strong>generación. Así, hemos <strong>de</strong>finido<br />

que GSK3 está en las vías <strong>de</strong> señalización iniciadas por<br />

Reelina o Netrina. Complementario a estas observaciones<br />

hemos comprobado algunos elementos neuroprotectores<br />

como los estrógenos controlan la actividad <strong>de</strong> GSK3,<br />

inhibiéndola, tanto en cerebro como en neuronas.<br />

Consi<strong>de</strong>rando la importancia <strong>de</strong> esta vía <strong>de</strong> señalización,<br />

estamos estudiando <strong>de</strong>talladamente este proceso.<br />

En segundo lugar nuestro objetivo es el conocimiento <strong>de</strong> las<br />

bases moleculares <strong>de</strong>l mecanismo que regula la<br />

polimerización <strong>de</strong> actina, esencial para numerosas<br />

funciones celulares. Utilizamos como proteína mo<strong>de</strong>lo WIP,<br />

que se une actina y a proteínas relacionadas, y analizamos<br />

su función en diversas activida<strong>de</strong>s celulares <strong>de</strong>pendientes<br />

<strong>de</strong> actina: como la morfogénesis neuronal (<strong>de</strong>ndritogénesis<br />

y formación axonal), así como activida<strong>de</strong>s más genéricas<br />

como adhesión o migración, en procesos patológicos. Los<br />

datos iniciales indican un papel relevante <strong>de</strong> WIP no solo<br />

como regulador <strong>de</strong>l citoesqueleto <strong>de</strong> actina, sino también<br />

en señalización celular.<br />

Our group is <strong>de</strong>voted to the analysis of molecular mechanism<br />

triggered by neuro<strong>de</strong>generative processes. We try to<br />

un<strong>de</strong>rstand key signals that regulate cellular morphogenesis,<br />

and how these putative pathways may be <strong>de</strong>fective in some<br />

pathological situations. As a second challenge we would like<br />

to propose regeneration alternatives.<br />

Analyzing some cellular mo<strong>de</strong>ls of neuro<strong>de</strong>generation, we<br />

have <strong>de</strong>fined that increases in the activity of glycogen<br />

synthase kinase 3 (GSK-3) correlate with neuronal<br />

<strong>de</strong>generation and in some cases with neuronal <strong>de</strong>ath. The<br />

pharmacological inhibition or the over-expression of a<br />

dominant-negative mutant of GSK-3 in neuron cells<br />

efficiently prevents prion-induced cell <strong>de</strong>ath. Second, we<br />

have <strong>de</strong>fined that an increase of GSK3 activity does not<br />

necessarily correlate with neuro<strong>de</strong>geration. Thus, we have<br />

<strong>de</strong>fined that GSK3 is un<strong>de</strong>r the control of Reelin pathway, as<br />

well as, Netrin1 pathway playing an essential role.<br />

Complementary with these observations, we have<br />

<strong>de</strong>monstrated the inhibition of GSK3 is a cellular event<br />

controlled by estrogens in brain and in neurons. Consi<strong>de</strong>ring<br />

the importance of estrogens as neuroprotector hormone, we<br />

are <strong>de</strong>eply analysing this pathway<br />

Our aim is to un<strong>de</strong>rstand the molecular basis of the<br />

mechanism that regulates actin polymerization, an essential<br />

process un<strong>de</strong>rlying numerous cellular functions. Our mo<strong>de</strong>l<br />

is WIP, a protein that binds actin and actin-related proteins,<br />

and we analyze its function in actin-<strong>de</strong>pen<strong>de</strong>nt cellular<br />

processes: neuronal <strong>de</strong>velopment and differentiation<br />

(<strong>de</strong>ndritic and axon formation) as well as more general<br />

function actin-regulated such as adhesion, migration, in<br />

pathological conditions. The initial data suggested that WIP<br />

is not only a protein relevant as a cytoskeletal controller but<br />

also <strong>de</strong>eply implicated in signalling.<br />

Jiménez-Mateos, E. M., Wandosell, F., Reiner, O., Ávila, J., and<br />

González-Billault, C. (2005). Binding of microtubule-associated protein<br />

1B to LIS1 affects the interaction between dynein and LIS1.<br />

Biochem. J. 389. 333-341.<br />

Gallego, M. D., <strong>de</strong> la Fuente, M., Anton, I. M., Snapper, S.B.,<br />

Fuhlbrigge, R.and Geha, R. S. (2005). WIP and WASP play<br />

complementary roles in T cell homing and chemotaxis to SDF-1α.<br />

Int.Immunol. 18, 221-232.<br />

Moreno-Flores, M. T., Bradbury, E. J., Martín-Bermejo, M. J., Agudo,<br />

M., Lim, F., Pastrana, E., Ávila, J., Díaz-Nido, J., McMahon, S. B. and<br />

Wandosell, F. (2006). A clonal cell line from immortalised olfactory<br />

ensheathing glia (OEG) promotes functional recovery in the injured<br />

spinal cord. Mol. Ther. 13, 598-608.<br />

Pastrana, E., Moreno-Flores, M. T., Gurzov, E. N., Ávila, J., Wandosell,<br />

F. and Díaz-Nido, J. (2006). Genes associated with adult axon<br />

regeneration promoted by olfactory ensheathing cells: a new role for<br />

matrix metalloproteinase 2”. J.Neurosci. 26, 5347-5359.<br />

Anton, I.M. and Jones, G.E. (2006). WIP: a mutifunctional protein<br />

involved in actin cytoskeleton regulation. Eur. J. Cell Biol. 85, 295-304.<br />

Chou, H., Anton, I.M., Holt, M., Curcio, C., Lanzardo, S., Worth, A.,<br />

Burns, S., Thrasher, A., Jones, G.E. and Calle, Y. (2006). WIP regulates<br />

stability and location of WASP to podosomes in migrating <strong>de</strong>ndritic<br />

cells. Current Biol. 16, 2337-2344.<br />

Men<strong>de</strong>z, P., Wandosell, F. and García-Segura, L. M. (2006). Cross-talk<br />

between Estrogen and Insulin–like Growth Factor-1 receptor in the<br />

brain: Cellular and molecular mechanisms”.<br />

Frontiers in Neuroendocrinology. 27, 391-403.<br />

Simon, D., Varea, O., Garrido J. J., and Wandosell, F. (2006). Role of<br />

GSK3/Shaggy in neuronal cell biology. In: Martínez,A., Castro, A. and<br />

Medina, M.(eds). Glycogen Synthase Kinase 3(GSK-3) and Its Inhibitors.<br />

Wiley-Intescience, John Wiley and Sons, Inc. Chapter 3, pp. 45-82.<br />

Otras Activida<strong>de</strong>s<br />

Other Activities<br />

Acuerdo <strong>de</strong> colaboración Fundación "SO" y FAES-FARMA.<br />

Acuerdo <strong>de</strong> colaboración Fundación "SO"-Pharmamar hasta 2005.<br />

CBM 2005/2006<br />

110<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!